%> (reinforcement learning) 11

T 5 5

» EEtE sy —> MDP:
= — P REES s € S
= — TS (BPIRE) A
= > FHREEA T(s,a,s”)
n > REERKE R(s,a,8”)
= KR TS n(s)

A

= AN—FERHT R AENIE T BLR, BT A E 2R
ANE AT B GRIBUH N, 22 5 4R

» Big idea: HH (473 BFEALE KT I T THY (QIR
) ¥WMHE

M MDPs Zl| RL

—
—-—

2 X0 MDP: Offline Solution

Goal Technique
ITE v*, Q*, ©* Value / policy iteration
TE—1NMEER Policy evaluation

J

<%0 MDP: Model-Based KA1 MDP: Model-Free

(Goal Technique) Goal Technique
T8 v, Q*, n* VI/Pl on approx. MDP | |48 v* Q*, n* Q-learning
Evaluate a fixed policy © PE on approx. MDP| | Evaluate a fixed policy & Value Learning

_ AN %

AETFEEIRY Learning

learning

= Experience world through episodes

= Model-free (F[B]Z %3 temporal difference) {l

/ / / !/ !/ !/ 1444
(s,a,r,s",a",r", s" a" r" s"". AS’

= Update estimates each transition
(s,a,r,s’)
» REEFFRZIE{G T Bellman updates by

’)

S

Approximating Values through Samples

= Policy Evaluation:

Vkﬂ_l_l(s) — ZT(S,W(S), SHIR(s,7(s),s") + q/VkW(s’)]

S

= \/alue Iteration:

Vit1(s) <+ mC?XZT(S, a,s’) {R(s,a, s") + ’YV]{(S,)} x

S

= (Q-Value lteration:

Qr+1(s,a) Y T(s,a,5") [R(Saaa s') 4+ maxQp(s',a)

S

\\ 2

Q-Learning (Q-BE=Z>))

s SFEPQIRZE, We'd like to do Q-value updates:
Qr+1(s,a) Y T(s,a,s") [R(S, a,s’) +~v maxQ(s’,a)
s’/ @

= But can’t compute this update without knowing T, R

= EMitH 1I(E as we go
» FIRBE— 2N transition (s,a,r,s’)
= This sample suggests

Qs,a) =7+ ymax Q(s',)

= But we want to average over results from (s,a) (Why?)
= So keep a running average

Qs,a) — (1=)Qs,a) + (@) |r + 7 MaxQ(s',)

Q-Learning [&14

= {LF: Q-learning WETTF &L (1751) ZRHEE -- even if

you’re acting suboptimally!

" This is called off-policy learning

» Caveats ffisa: .
" You have to explore enough £ e
» ERZZEE(F learning rate TEEZ/)\
. (BRENAEELERVNIKR

= Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning — auto — cliff grid (L11D1)]

Sy ——

How to Explore?

= JLFP G ARSI T exploration
» ExiE) EEHY: BEIEE T (e-greedy)
= Every time step, flip a coin

= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

 BENIEE TR)RR E?
=" You do eventually explore the space, but keep
thrashing around once learning is done
= One solution: Z&E/)\ € over time
= Another solution: {FFIRZEAZL exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)] [Demo: Q-learning —
epsilon-greedy -- crawler (L11D3)]

71:Q-learning — Manual Exploration — Bridge Grid

I3IE7Tx Q-learning — Epsilon-Greedy — Crawler

Exploration Functions}RZ<RRZN

= When to explore?
= Random actions: explore a fixed amount

» BAUFRAYAEE: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function FRZREREY
= WA, I EETTRAE Y, 512 ARQIRSEYRE n, and

returns an optimistic utility, e.g.

f(u,n) =u+k/n
Regular Q-Update: Q(s,a) +a R(s,a,s") +~ max Q(s', a")

1S3 Q-Update: Qs,a) o R(s.a.5) +7max [(Q(sa), N (s,)

= Note: this propagates the “bonus” back to states that lead to unknown states

as well!
[Demo: exploration — Q-learnine — crawler — exploration function (L11D4)]

NS EINQ-learning — RZREREY — Crawler

Regret

2 S R L FE F, S0 R (0
HATE), SEAGRSEE)

Regret x&—/Mir& Xt TARIIHLAS N IL e,
SR Z A ARE IR R E 2 %=
;ﬁé,ﬁEﬂ%ﬁﬁ?ft%‘aEI‘J%J?ME%DB%T}E%@EMEEI‘J
=

/M regret ARG o B2 SIAAL SRS
VLMW - BRI 5E (BVE)
ZIKE&%B%TM{EI’J

. FENLIR R B ¥Erandom exploration
M M HERZE K Eexploration functions
&L, ARl AR B E AT B R, (HE
A& A B K regret

Approximate Q-Learning

Generalizing Across States (JZ{IRTS)

* Basic Q-Learning keeps a table of all g-values

<My —=l1== Ay g __/ A
 FEISCBIER, AR IR TEH IS
= Too many states to visit them all in training

= Too many states to hold the g-tables in memory

s X5, we want to generalize:
= Learn about some small number of training states from
experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]

Example: Pacman

BRI BT In naive g-learning, |
RIS R 1 we know nothing Or even this one!
FERY: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]

l3IE77:Q-Learning Pacman — Tiny — Watch Al

MINERQ-Learning Pacman — Tiny — Silent Train

I3 E1RQ-Learning Pacman — Tricky — Watch Al

ETFERYAESRIR

= Solution: describe a state usigg a vector of
features (properties) {SEFE4F I RI&=

= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1/ (dist to dot)?
= |s Pacman in a tunnel? (0/1)

»

»

*
L
*
L
-
*
L
*
@

|
M
—+
o
»

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

FIHENZMEI S

»= Using a feature representation, we can write a g function (or value
function) for any state using a few weights:

V(s) = wif1(s) +wafa(s) + ...+ wnfrn(s)

Q(Sa (l) — wlfl(sa CL)"-’UJQfQ(S, a’)_l_ . +wnfn(87 CI,)
= {JLZ: our experience is summed up in a few powerful numbers

= 558%: states may share features but actually be very different in
value!

\
,

Approximate 1Ll Q-Learning

QGs,0) = wifa(s,) twnfa(s, @)+ unalsia) |

* Q-learning with linear Q-functions:

transition = (s,a,r,s’)
o Q(S,CL)
Q(s,a) — Q(s,a) + o [difference] ExactQs

difference = [r + ~ max Q(s',a")
a

w; — w; + o [difference] f;(s,a) ApProximate Q's

' [EIERAYARRE.
« FREELERYEHHERINE
= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

s Formal justification: online least squares TEZk&/N_{Bi%

z:M5l: Q-Pacman

Q(S,CL) — 4'OfDOT(Saa) — 1'OfGST(Saa)
)

M /por(s,NORTH) = 0.5

a = NORTH
r = —500

fasT(s, NORTH) = 1.0

J

Q(s,NORTH) = +1
r + vy max Q(s',a’) = -500+0
a

difference = —501 wpor < 4.0 + a[-501]0.5
jv wagr — —1.0 + a [-501] 1.0

Q(s,a) =3.0fpor(s,a) —3.0fgsr(s,a) ppe

learning

Q(S,7) =0

Sy ——

Q-Learning and Least Squares

Linear Approximation: Regression™

40r

20

f1(x)

Prediction: Prediction:

Yy = wo + wiy f1(x) y; = wo + wy f1(x) + woafo(x)

Optimization: Least Squares™

2
total error = %" (y; — G;)° =3 (yz- — Zwkfk(xi)>
: k
1

()

. Error or “residual”
Observation Y

Prediction :{j

° f1(x) !

Minimizing Error*®

Imagine we had only one point x, with features f(x), target value vy,
and weights w:

2
error(w) = % (y — Zwkfk($)>
k

0 error(w)

OWm,

— (y — Zwkfk($)> fm(x)
k

W — wm + o (y - Zwkfk($)> fm(x)
k

Approximate q update explained:
wm — wn + o [r+ymaxQ(s',a’) — Q(s,a)| fin(s, a)

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

" Problem: often the feature-based policies that work well (win
games, maximize utilities) aren’t the ones that approximate V /
Q best

= E.g.your value functions from project 2 were probably horrible estimates
of future rewards, but they still produced good decisions

= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)

= WeEe'll see this distinction between modeling and prediction again later in
the course

= Solution: learn policies that maximize rewards, not the values
that predict them

» Policy search: start with an ok solution (e.g. Q-learning) then
fine-tune by hill climbing on feature weights

Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function

= Nudge each feature weight up and down and see if your
policy is better than before

" Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
= |f there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample
wisely, change multiple parameters...

Policy Search

[Andrew Ng] [Video: HELICOPTER]

RL: Learning Locomotion

lteration O

I
M

|||J I

I

|| ||||I”
|| I
[il
' ,ll.llll‘l'l'

_‘ll

[Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]

[Video: GAE]

RL: Learning Soccer

[Bansal et al, 2017]

RL: Learning Manipulation

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

RL: NASA SUPERDball

[Geng*, Zhang*, Bruce*, Caluwaerts, Vespignani, Sunspiral, Abbeel, Levine, ICRA 2017] i . ;
Pieter Abbeel -- UC Berkeley | Gradescope | Covariant.Al

RL: In-Hand Manipulation

Pieter Abbeel -- UC Berkeley |
Gradescope | Covariant. Al

OpenAl: Dactyl

Conclusion

= We're done with Part I: Search and Planning!

= We've seen how Al methods can solve
problems in:
= Search
= Constraint Satisfaction Problems
= Games
= Markov Decision Problems
= Reinforcement Learning

= Next up: Part Il: Uncertainty and Learning!

	�
	加强学习
	从 MDPs 到 RL
	不基于模型的 Learning
	Approximating Values through Samples
	Q-Learning （Q-值学习）
	Q-Learning 属性
	视频演示Q-Learning Auto Cliff Grid
	Exploration探索 vs. Exploitation利用
	How to Explore?
	视频演示Q-learning – Manual Exploration – Bridge Grid
	视频演示 Q-learning – Epsilon-Greedy – Crawler
	Exploration Functions探索函数
	视频演示Q-learning – 探索函数 – Crawler
	Regret
	Approximate Q-Learning
	Generalizing Across States（泛化状态）
	Example: Pacman
	视频演示Q-Learning Pacman – Tiny – Watch All
	视频演示Q-Learning Pacman – Tiny – Silent Train
	视频演示Q-Learning Pacman – Tricky – Watch All
	基于特征的状态表达
	特征值的线性拟合
	Approximate 近似 Q-Learning
	举例: Q-Pacman
	视频演示Approximate Q-Learning -- Pacman
	Q-Learning and Least Squares
	Linear Approximation: Regression*
	Optimization: Least Squares*
	Minimizing Error*
	Overfitting: Why Limiting Capacity Can Help*
	Policy Search
	Policy Search
	Policy Search
	Policy Search
	RL: Learning Locomotion
	RL: Learning Soccer
	RL: Learning Manipulation
	RL: NASA SUPERball
	RL: In-Hand Manipulation
	OpenAI: Dactyl
	Conclusion

