
加强学习(reinforcement learning) II

加强学习

 假定情景仍为一个 MDP:
 一个 状态集合 s ∈ S

 一个 行动集合 (每个状态) A

 一个 转移模型 T(s,a,s’)

 一个 奖赏值函数 R(s,a,s’)

 依然是寻找一个策略 π(s)

 不一样的地方是: 不知道 T 或 R, 所以必须去尝试
不同的行动(获取相应的奖赏值)

 Big idea: 利用(行动)样本结果来计算基于T的(Q状
态)均值

从 MDPs 到 RL

已知 MDP: Offline Solution

Goal Technique

计算 V*, Q*, π* Value / policy iteration

评估一个给定的 π Policy evaluation

未知 MDP: Model-Based 未知 MDP: Model-Free

Goal Technique

计算 V*, Q*, π* VI/PI on approx. MDP

Evaluate a fixed policy π PE on approx. MDP

Goal Technique

计算 V*, Q*, π* Q-learning

Evaluate a fixed policy π Value Learning

不基于模型的 Learning

 Model-free (时间差分temporal difference)
learning
 Experience world through episodes

 Update estimates each transition

 反复更新最终模仿了 Bellman updates

r

a
s

s, a

s’
a’

s’, a’

s’’

Approximating Values through Samples

 Policy Evaluation:

 Value Iteration:

 Q-Value Iteration:

Q-Learning （Q-值学习）

 对于每个Q状态，We’d like to do Q-value updates:

 But can’t compute this update without knowing T, R

 转而计算 均值 as we go
 每获得一个 样本 transition (s,a,r,s’)
 This sample suggests

 But we want to average over results from (s,a) (Why?)
 So keep a running average

Q-Learning 属性

 优势: Q-learning 收敛于最优（行动）策略 -- even if
you’re acting suboptimally!

 This is called off-policy learning

 Caveats 缺点:
 You have to explore enough
 最终要使 learning rate 变得足够小
 … 但是又不能让它减小的太快
 Basically, in the limit, it doesn’t matter how you select actions (!)

[Demo: Q-learning – auto – cliff grid (L11D1)]

视频演示Q-Learning Auto Cliff Grid

Exploration探索 vs. Exploitation利用

How to Explore?

 几种方法用来执行 exploration
 最简单的: 随机选择行动 (ε-greedy)
 Every time step, flip a coin
 With (small) probability ε, act randomly
 With (large) probability 1-ε, act on current policy

 随机选择行动的问题所在?
 You do eventually explore the space, but keep

thrashing around once learning is done
 One solution: 逐渐减小 ε over time
 Another solution: 使用探索函数 exploration functions

[Demo: Q-learning – manual exploration – bridge grid (L11D2)] [Demo: Q-learning –
epsilon-greedy -- crawler (L11D3)]

视频演示Q-learning – Manual Exploration – Bridge Grid

视频演示 Q-learning – Epsilon-Greedy – Crawler

Exploration Functions探索函数
 When to explore?
 Random actions: explore a fixed amount
 更好的想法: explore areas whose badness is not

(yet) established, eventually stop exploring

 Exploration function 探索函数
 两个输入，一个是估计的Q值 u，另一个是 访问Q状态的次数 n, and

returns an optimistic utility, e.g.

 Note: this propagates the “bonus” back to states that lead to unknown states
as well!

修改的 Q-Update:

Regular Q-Update:

[Demo: exploration – Q-learning – crawler – exploration function (L11D4)]

视频演示Q-learning – 探索函数 – Crawler

Regret

 在学习最优策略的过程中，会犯错误（选
错行动，导致不好的结果）

 Regret 是一个衡量对于你的机器人所犯错
误导致的代价之和: 你的期望奖励值之差
值，即你所获得的奖励值和最优奖励值的
差值

 最小化 regret 本身涉及到学习优化策略
以外的事 – 需要你的学习方法（算法）
本身也是最优化的

 例如: 随机探索算法random exploration
和 利用探索函数exploration functions
的算法，都可以找到最优行动策略, 但是
前者有更大的 regret

Approximate Q-Learning

Generalizing Across States（泛化状态）

 Basic Q-Learning keeps a table of all q-values

 在现实情境中, 不可能学习关于每个状态!
 Too many states to visit them all in training
 Too many states to hold the q-tables in memory

 转而, we want to generalize:
 Learn about some small number of training states from

experience
 Generalize that experience to new, similar situations
 This is a fundamental idea in machine learning, and we’ll

see it over and over again

[demo – RL pacman]

Example: Pacman

[Demo: Q-learning – pacman – tiny – watch all (L11D5)]
[Demo: Q-learning – pacman – tiny – silent train (L11D6)]
[Demo: Q-learning – pacman – tricky – watch all (L11D7)]

假设我们通过经验
发现这个状态是槽

糕的:

In naïve q-learning,
we know nothing
about this state:

Or even this one!

视频演示Q-Learning Pacman – Tiny – Watch All

视频演示Q-Learning Pacman – Tiny – Silent Train

视频演示Q-Learning Pacman – Tricky – Watch All

基于特征的状态表达

 Solution: describe a state using a vector of
features (properties) 使用特征向量
 Features are functions from states to real numbers

(often 0/1) that capture important properties of the
state

 Example features:
 Distance to closest ghost
 Distance to closest dot
 Number of ghosts
 1 / (dist to dot)2

 Is Pacman in a tunnel? (0/1)
 …… etc.
 Is it the exact state on this slide?

 Can also describe a q-state (s, a) with features (e.g.
action moves closer to food)

特征值的线性拟合

 Using a feature representation, we can write a q function (or value
function) for any state using a few weights:

 优势: our experience is summed up in a few powerful numbers

 劣势: states may share features but actually be very different in
value!

Approximate 近似 Q-Learning

 Q-learning with linear Q-functions:

 简单的解释:
 调整激活的特征值的权重
 E.g., if something unexpectedly bad happens, blame the features that were on:

disprefer all states with that state’s features

 Formal justification: online least squares 在线最小二值法

Exact Q’s

Approximate Q’s

举例: Q-Pacman

[Dem
learning

视频演示Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

0 20
0

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear Approximation: Regression*

Prediction: Prediction:

Optimization: Least Squares*

0 20
0

Error or “residual”

Prediction

Observation

Minimizing Error*

Approximate q update explained:

Imagine we had only one point x, with features f(x), target value y,
and weights w:

“target” “prediction”

0 2 4 6 8 10 12 14 16 18 20
-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

 Problem: often the feature-based policies that work well (win
games, maximize utilities) aren’t the ones that approximate V /
Q best
 E.g. your value functions from project 2 were probably horrible estimates

of future rewards, but they still produced good decisions
 Q-learning’s priority: get Q-values close (modeling)
 Action selection priority: get ordering of Q-values right (prediction)
 We’ll see this distinction between modeling and prediction again later in

the course

 Solution: learn policies that maximize rewards, not the values
that predict them

 Policy search: start with an ok solution (e.g. Q-learning) then
fine-tune by hill climbing on feature weights

Policy Search

 Simplest policy search:
 Start with an initial linear value function or Q-function
 Nudge each feature weight up and down and see if your

policy is better than before

 Problems:
 How do we tell the policy got better?
 Need to run many sample episodes!
 If there are a lot of features, this can be impractical

 Better methods exploit lookahead structure, sample
wisely, change multiple parameters…

Policy Search

[Andrew Ng] [Video: HELICOPTER]

RL: Learning Locomotion

[Video: GAE][Schulman, Moritz, Levine, Jordan, Abbeel, ICLR 2016]

RL: Learning Soccer

[Bansal et al, 2017]

RL: Learning Manipulation

[Levine*, Finn*, Darrell, Abbeel, JMLR 2016]

RL: NASA SUPERball

[Geng*, Zhang*, Bruce*, Caluwaerts, Vespignani, Sunspiral, Abbeel, Levine, ICRA 2017] Pieter Abbeel -- UC Berkeley | Gradescope | Covariant.AI

RL: In-Hand Manipulation

Pieter Abbeel -- UC Berkeley |
Gradescope | Covariant.AI

OpenAI: Dactyl

Trained with domain randomization

[OpenAI]

Conclusion

 We’re done with Part I: Search and Planning!

 We’ve seen how AI methods can solve
problems in:
 Search
 Constraint Satisfaction Problems
 Games
 Markov Decision Problems
 Reinforcement Learning

 Next up: Part II: Uncertainty and Learning!

	�
	加强学习
	从 MDPs 到 RL
	不基于模型的 Learning
	Approximating Values through Samples
	Q-Learning （Q-值学习）
	Q-Learning 属性
	视频演示Q-Learning Auto Cliff Grid
	Exploration探索 vs. Exploitation利用
	How to Explore?
	视频演示Q-learning – Manual Exploration – Bridge Grid
	视频演示 Q-learning – Epsilon-Greedy – Crawler
	Exploration Functions探索函数
	视频演示Q-learning – 探索函数 – Crawler
	Regret
	Approximate Q-Learning
	Generalizing Across States（泛化状态）
	Example: Pacman
	视频演示Q-Learning Pacman – Tiny – Watch All
	视频演示Q-Learning Pacman – Tiny – Silent Train
	视频演示Q-Learning Pacman – Tricky – Watch All
	基于特征的状态表达
	特征值的线性拟合
	Approximate 近似 Q-Learning
	举例: Q-Pacman
	视频演示Approximate Q-Learning -- Pacman
	Q-Learning and Least Squares
	Linear Approximation: Regression*
	Optimization: Least Squares*
	Minimizing Error*
	Overfitting: Why Limiting Capacity Can Help*
	Policy Search
	Policy Search
	Policy Search
	Policy Search
	RL: Learning Locomotion
	RL: Learning Soccer
	RL: Learning Manipulation
	RL: NASA SUPERball
	RL: In-Hand Manipulation
	OpenAI: Dactyl
	Conclusion

