贝叶斯网络: 独立性(INDEPENDENCE)

概率复习

Conditional probability

$$P(x|y) = \frac{P(x,y)}{P(y)}$$

Product rule

$$P(x,y) = P(x|y)P(y)$$

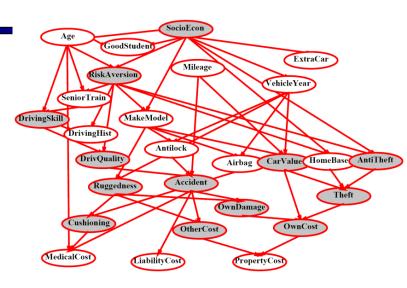
• Chain rule $P(X_1, X_2, ... X_n) = P(X_1)P(X_2|X_1)P(X_3|X_1, X_2)...$ = $\prod_{i=1}^{n} P(X_i|X_1, ..., X_{i-1})$

- **X,** Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$
- X and Y are conditionally independent given Z if and only if:

$$\forall x, y, z : P(x, y|z) = P(x|z)P(y|z) \qquad X \perp \!\!\! \perp Y|Z$$

Bayes' Nets 贝叶斯网络

- 对一个领域里变量构成的概率模型的 有效率的编码
- Questions we can ask:
 - 推理: given a fixed BN, what is P(X | e)?
 - 表达: given a BN graph, what kinds of distributions can it encode?
 - 建模: what BN is most appropriate for a given domain?

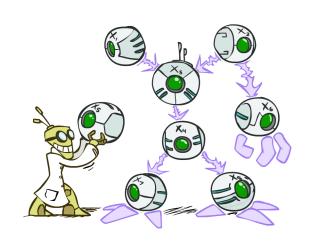


贝叶斯网络的语义

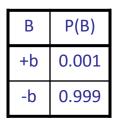
- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values $P(X|a_1 \ldots a_n)$

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

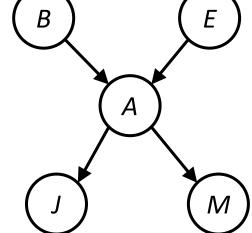
$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$



Example: Alarm Network

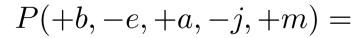


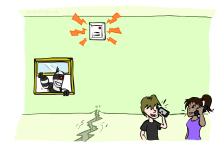
Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95



Е	P(E)
+e	0.002
-е	0.998

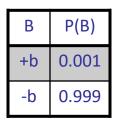
Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99



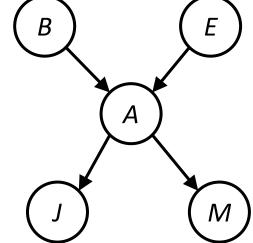


В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network

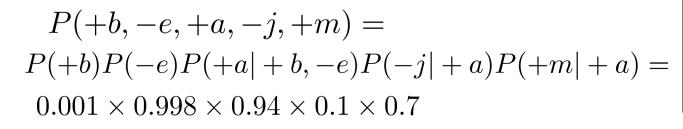


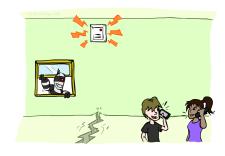
Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95



Е	P(E)
+e	0.002
-e	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99





В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

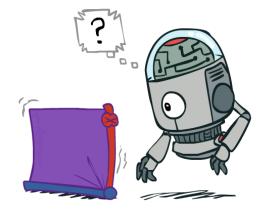
Size of a Bayes' Net

How big is a joint distribution over N Boolean variables?

 2^N

How big is an N-node net if nodes have up to k parents?

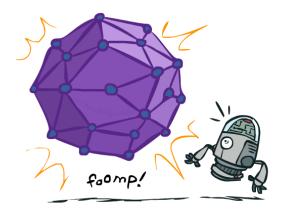
$$O(N * 2^{k+1})$$



Both give you the power to calculate

$$P(X_1, X_2, \ldots X_n)$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)



Bayes' Nets

- **✓** Representation
 - Conditional Independences
 - Probabilistic Inference
 - Learning Bayes' Nets from Data

Conditional Independence 条件独立性

X and Y are independent if

$$\forall x, y \ P(x, y) = P(x)P(y) - - \rightarrow X \perp \!\!\!\perp Y$$

X and Y are conditionally independent given Z

$$\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) - - \rightarrow X \perp \!\!\!\perp Y|Z$$

- (Conditional) independence is a property of a distribution
- Example: $Alarm \perp Fire | Smoke$

Bayes Nets: Assumptions

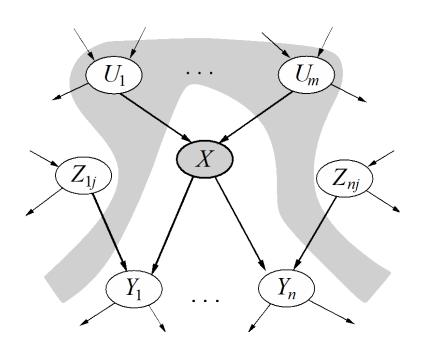
 Assumptions we are required to make to define the Bayes net when given the graph:

$$P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

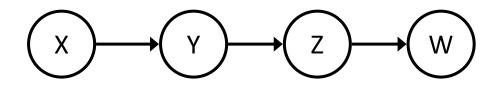
条件独立性语义

■ 当给定它的父节点取值后,每个变量都是条件独立于它的其他祖先节点变量



贝叶斯网络里的概率

- 为什么我们可以保证以下公式是正确的联合分布 $P(X_1,...,X_n) = \prod_i P(X_i \mid Parents(X_i))$
 - 连锁法 (对所有分布有效): $P(X_1,..,X_n) = \prod_i P(X_i \mid X_1,...,X_{i-1})$
 - <u>假定</u> 条件独立性: $P(X_i \mid X_1,...,X_{i-1}) = P(X_i \mid Parents(X_i))$
 - 当加入节点 X, 确保其父节点 "屏蔽" 它与其他祖先节点的联系
 - 给定它的父节点,每个变量条件独立于它的非子孙节点变量(即所有它之前的变量)
 - \rightarrow 结果: $P(X_1,...,X_n) = \prod_i P(X_i \mid Parents(X_i))$
- ■所以, 网络的拓扑结构暗示着条件独立性

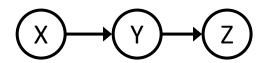


■ 蕴含哪些条件独立性假设 (directly from simplifications in chain rule)?

■ 还有没有蕴含其他的条件独立性假设?

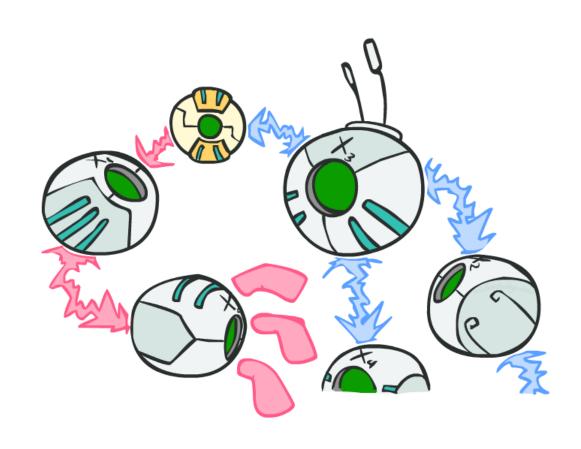
Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:



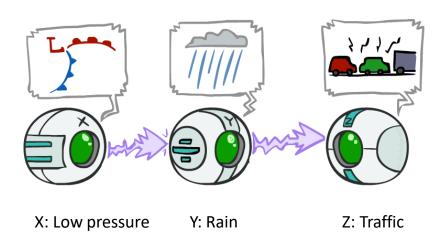
- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

D-separation(D分离): Outline



Causal Chains (因果关系链)

This configuration is a "causal chain"



$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

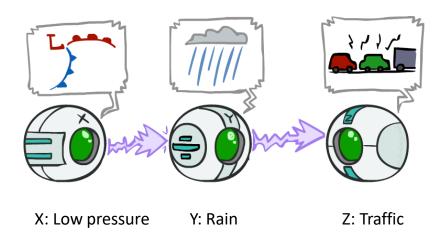
- Guaranteed X independent of Z? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

$$P(+y | +x) = 1, P(-y | -x) = 1,$$

 $P(+z | +y) = 1, P(-z | -y) = 1$

Causal Chains (因果关系链)

This configuration is a "causal chain"



$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

• Guaranteed X independent of Z given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

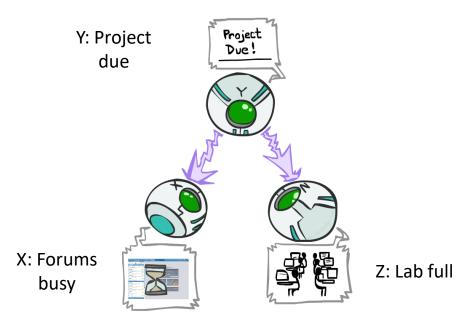
$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$

$$= P(z|y)$$
Yes!

Evidence along the chain "blocks" the influence

Common Cause(原因相同)

This configuration is a "common cause"



P(x, y, z) = P(y)P(x|y)P(z|y)

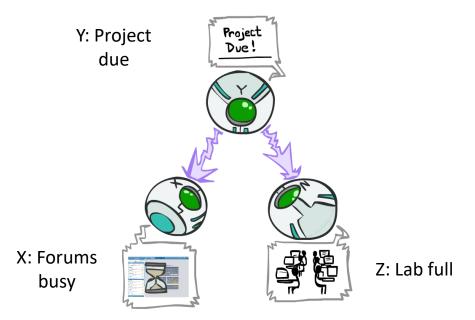
- Guaranteed X independent of Z? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Project due causes both forums busy and lab full
 - In numbers:

$$P(+x \mid +y) = 1, P(-x \mid -y) = 1,$$

 $P(+z \mid +y) = 1, P(-z \mid -y) = 1$

Common Cause (原因相同)

This configuration is a "common cause"



$$P(x, y, z) = P(y)P(x|y)P(z|y)$$

Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$

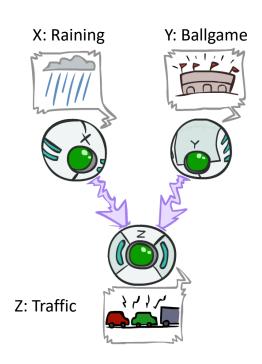
$$= \frac{P(y)P(x|y)P(z|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$
Yes!

 Observing the cause blocks influence between effects.

Common Effect (结果相同)

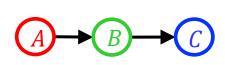
 Last configuration: two causes of one effect (v-structures)

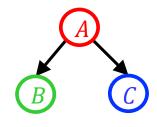


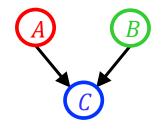
- Are X and Y independent?
 - Yes: the ballgame and the rain cause traffic, but they are not correlated
 - Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

条件独立语法

- 对于下列贝叶斯网络,写出联合分布 P(A,B,C)
 - 1. 使用链式法则 (顺序为A,B,C)
 - 2. 使用贝叶斯网络语法 (CPT 的乘积)







P(A) P(B|A) P(C|A,B)

P(A) P(B|A) P(C|A,B)

P(A) P(B|A) P(C|A,B)

P(A) P(B|A) P(C|B)

P(A) P(B|A) P(C|A)

P(A) P(B) P(C|A,B)

前提:

P(C|A,B) = P(C|B)C 独立于A 当给定B后

P(C|A,B) = P(C|A)B和C独立给定A的值后

前提:

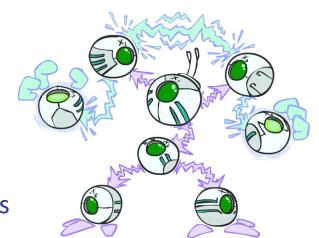
前提: P(B|A) = P(B) A和B独立

The General Case(一般情况)

General question: in a given BN, are two variables independent (given evidence)?

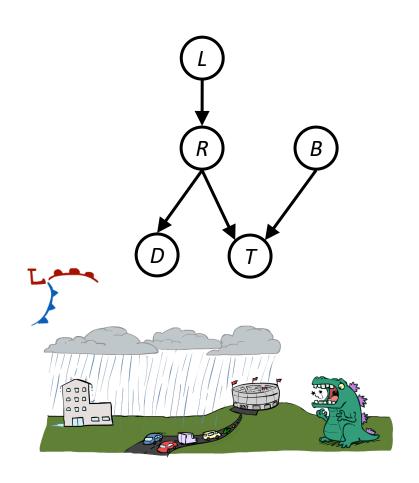
Solution: analyze the graph

 Any complex example can be broken into repetitions of the three canonical cases



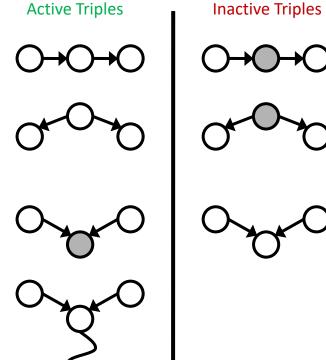
Reachability (联通性判断是否条件独立)

- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path blocked by a shaded node, they are conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"



Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
 - Consider all (undirected) paths from X to Y
 - No active paths = independence!
- A path is 通路 if each triple is active:
 - Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure)
 A → B ← C where B or one of its descendents is observed
- All it takes to block a path is a single inactive segment



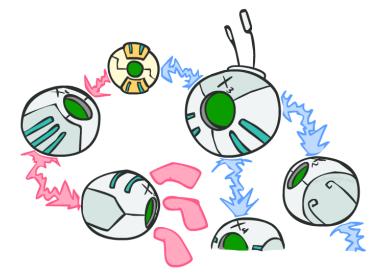
D-Separation(D分离)

- Query: $X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

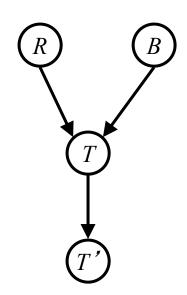
$$X_i \stackrel{\searrow}{\searrow} X_j | \{X_{k_1}, ..., X_{k_n}\}$$

Otherwise (i.e. if all paths are inactive),
 then independence is guaranteed

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$



 $R \! \perp \! \! \perp \! \! B$ Yes $R \! \perp \! \! \! \perp \! \! B | T$ $R \! \perp \! \! \! \! \perp \! \! B | T'$



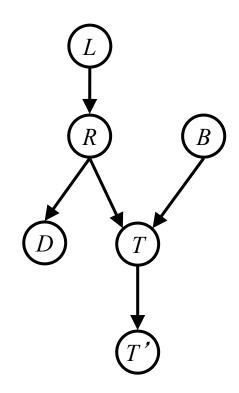
 $L \perp \!\!\! \perp T' | T$ Yes

 $L \! \perp \! \! \! \perp \! \! B$ Yes

 $L \! \perp \! \! \perp \! \! B | T$

 $L \! \perp \! \! \perp \! \! B | T'$

 $L \! \perp \! \! \perp \! \! B | T, R$ Yes



Variables:

R: Raining

■ T: Traffic

■ D: Roof drips

■ S: I'm sad

• Questions:

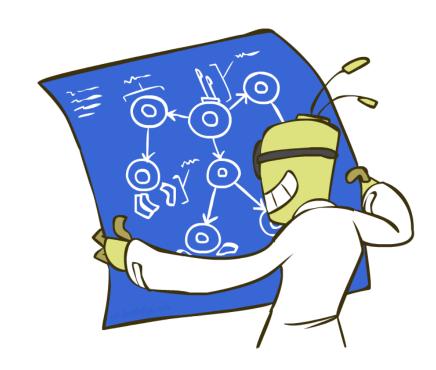


图形结构蕴含了条件独立假设

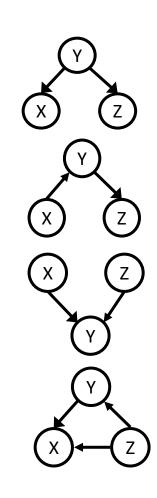
■ 给定一个贝叶斯网络结构,可以运行 dseparation 算法,找到所有条件独立假设:

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that can be represented

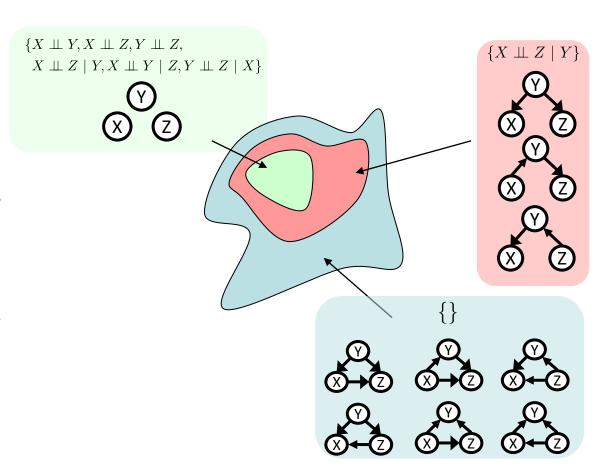


尝试计算所有表达的独立性假设



图结构限制了所能表达的分布集合

- Given some graph topology G, only certain joint distributions can be encoded
- 图结构保证了(条件)独 立假设的存在
- (There might be more independence)
- 增加边,扩大了所能表示的分布集合,but has several costs
- Full conditioning can encode any distribution



贝叶斯网络表达语义小结

- 贝叶斯网络 compactly encode 联合分布
- 从贝叶斯网络图的结构可以推出独立性假设
- D-separation gives precise 条件独立性假设 from graph alone
- 一个贝叶斯网络所表达的联合分布模型中可能还存在(D分离)监测不出来的(条件)独立情况,除非这时你检查具体的分布中的数值(来做进一步的推断)

贝叶斯网络内容

Representation

- Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes' Nets from Data