LT IESRE M %S

Bl ZetEF Bl 57 2=T

Inputs are feature values
Each feature has a weight
Sum is the activation

activationy(z) =) w; - fi(z) = w- f(x)

If the activation is:
= Positive, output +1
= Negative, output -1

2

Activation:

Sigmoid function

$(2) =

SUABRISHEERACAYF BIR TR

z=w- f(x)

very positive = want probability going to 1
very negative = want probability going to O

1

KEFER{LHY w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\aj(i);w)

w

1
1+ e—w fzl®)
1

with: Py = +1]z'w) =

Py = —1aw) =1 - ———

= Logistic Regression

23R = Atsall3

» Multi-class linear classification wy - f biggest
w1
= A weight vector for each class: wy
" Score (activation) of aclassy: quy, - f(g;) w3
wo
" Prediction w/highest score wins: Yy = arg max wy, - f(x) . f w3 - f
Y w2 biggest
biggest
" How to make the scores into probabilities?
z Z Z
el e~? e~

Z1522,23 —7 y y
e°l + e*2 + e*3 e*l 4 e*2 +e*3 €e*l 4 e*2 4 e*3

| J L J
| Y

original activations softmax activations

KEFER{LHY w?

= Maximum likelihood estimation:

max [l(w) = max ZlogP(y(i)\aj(i);w)

w

oWy () (™)

s (4) 1 (1) . 0y} —
with: P(y‘"|x\"; w) Zyewy‘f(“'(i))

= Multi-Class Logistic Regression

fLiLIR)R

= Optimization

= j.e., how do we solve:

max [l(w) = max ZlogP(y(i)\x(i);w)

w

Hill Climbing L &L %

AN

| LL

» AR ER)RRE
= Start wherever

= Repeat: move to the best neighboring state
" |f no neighbors better than current, quit

 XERH, RBSHE T EEE

\

N1 : simple, general idea

-4

!
I3fEALIaER?

 Optimization over a continuous space &EZEZS|5]

* Infinitely many neighbors!
* How to do this efficiently?

— UL

= Could evaluate g(wg 4+ h) and g(wy — h)

" Then step in best direction

dg(wo)

L . glwo +h) —g(wo —h
= Or, evaluate derivative: 9 Z}ng}) (to)2h (to — 1)

= Tells which direction to step into

2-D Optimization

Source: offconvex.org

Gradient Ascent I REFH=;

- IEE—HRERNERR _LLLANTSE
= TREERE (i.e. SELEXK) EFHIS KK

= fian:
g(’LU1, wQ)
= Updates:
= Updates in vector notation:
dg
w1%w1+&*a—w(w1,wz) W w4 a % Vig(w)

0g 9
Wg <— W + (¢ * 8—w2(wl’ w2) with: V,g(w) = [851(10)] = gradient

BEE

= |dea:
= Start somewhere
= Repeat: Take a step in the gradient direction

Figure source: Mathworks

w + A R,
A:AT4+AS<e g() f

—Prz=gnRET
EFEIERITET 5 -

-
. max A'a
Recall: AlAT<e

Hence, solution: A =c¢

KiFexERY T A]?

max

9

Vg

IVl

A:

A

e
g g
w+A)~glw)+ —A + —A
g() ~ g(w) 90 M T g2
dg dg
Jpax, 9wt g At g A

a
= &£—
lal

Gradient direction = steepest direction!

Gradient in n dimensions fBE

Uiz SE LA

"= 1nit w

= for 1ter =1, 2,

w — w~+ a*x Vg(w)

\\ 2

v FSJER - tweaking parameter that needs to be chosen
carefully

= How? Try multiple choices
o 2G5 E: update changes W about 0.1 -1 %

Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)\x(i);w)

\ J

g(w)

" init W

= for 1iter =1, 2, ..

w 4— w + ok ZVIogP(y(i)\x(i);w)

EHRE EHEFPE M TUEREAVEFT?

W W+ o x Zngp(y(z')‘x(z‘);w)

oWy (i) (@)

i o ()
V’wyu)f(iﬁ())—VlogZe yf (@)

adds f to the correct
class weights

Py 2®; w) =

> ewyf(x()) Z(wy @[T £(D) TT]T)

for y’ weights: ey F(@) £ ()

>, evvf @)

. (i) subtracts f from y’ weights in proportion to
(y'le™s w) f (@) the probability current weights give to y’

Stochastic Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)\x(i);w)

Observation: once gradient on one training example has been
computed, might as well incorporate before computing next one

" inlit w
= for 1ter =1, 2,

" pick random 7

w < w+ a* Vlog Py |z\9): w)

Mini-Batch Gradient Ascent on the Log Likelihood Objective

w

max [l(w) = max ZlogP(y(i)\x(i);w)

Observation: gradient over small set of training examples (=mini-batch)
can be computed in parallel, might as well do that instead of a single one

"= Inlit w
= for 1ter =1, 2,
" pick random subset of tralning examples J

W — W+ Q * ZVIogP(y(j)\x(j);w)
jedJ

How about computing all the derivatives?

= \We'll talk about that once we covered neural networks, which
are a generalization of logistic regression

Neural Networks fHZE /] 4%

23R = Atsall3

" = special case of neural network

f1(x)

e*t

e + e%2 + 7

z, > S —— Plulyw)=

fo(x)

e?2

¥ + e%2 + 7

5 P(ys|z;w) =
f3(x)

<3

X © 3 + Hh O

e

2, T Plslnw) =

fi(x)

22X28& = Also learn the features!

5

Deep Neural Network)&®,

f1(x)

e*1
Zy S — Py |z w) = e*1l 4 e*2 + e3
f,(x) ©
f
t -
f5(x) ZZ B m " P(yz‘x, w) - e*l + e*2 + e*3
a
X e
z, L P(yB‘wa) —

et + e*2 + e

fi(x)

Deep Neural Network = Also learn the features!

(1) (2) L (n=1))

1 <1 1
(1) (2) A7 s — Plylzw)
1 2
Z5 29 Zén—l) £,(x) O
f
ovry | t P(ya|z; w)
2 n— —> Y2\,
ngl) Zé) 2"V i > m
a
X
OV 7 —— P(ys|z; w)
(1) (2) e
K1) Z 1 (2) A flx)

ka) — g(E Wz(,];— 1,k) Z§k_ 1)) g = nonlinear activation function

J

Deep Neural Network = Also learn the features!

21 <1 1 21
(n) AOVT— s L Pyilzw)
(1) (2) - n
f
OUuTy T L L P(yo|r;w)
1 2 n—1 (’n) z Y2\,
Zé) z§) 2" Z3 ’ m
a
LOUT— F L P(ys|aiw)
(1) (2) e (n)
zK(l) ZK(Q) Z§<<n2> ZK(H)

ka) — g(E Wz(,];— 1,k) Z§k_ 1)) g = nonlinear activation function

J

B FRRYBUERREL

Sigmoid Function Hyperbolic Tangent Rectified Linear Unit (RelLU)
i | — 5
9(z) oiz) 02 |
g'(z) | 0.5 | gz | | 4 | g'(z)
_3 b
0
"
-05 | N
_ B S— _ " .
0 5 5 0 5 -5 0

1 e —e~*
T g(z)= g(z)=max (0, z)

gz)=

, 1, 0
g'(z)= g(z)(1-g(2)) 9'(z)=1-g(2)* g (z)= {U, othir?vise

Deep Neural Network: Also Learn the Features!

" Training the deep neural network is just like logistic regression:

w

max [l(w) = max ZlogP(y(i”az(i);w)

just w tends to be a much, much larger vector ©

—just run gradient ascent
+ stop when log likelihood of hold-out data starts to decrease

feRZ ol YR

" Theorem (Universal Function Approximators). A two-layer neural
network with a sufficient number of neurons can approximate
any continuous function to any desired accuracy.

gl
cidl

" Practical considerations
= Can be seen as learning the features
" Large number of neurons

= Danger for overfitting
* (hence early stopping!)

Universal Function Approximation Theorem?*

Hornik theorem 1: Whenever the activation function is bounded and nonconstant, then,

for any finite measure p, standard multilayer feedforward networks can approximate any
function in LP(xt) (the space of all functions on R* such that [p« |f(z)[Pdpu(z) < o) arbi-

trarily well, provided that sufficiently many hidden units are available.

Hornik theorem 2: Whenever the activation function is continuous, bounded and non-
constant, then, for arbitrary compact subsets X C R*, standard multilayer feedforward
networks can approximate any continuous function on X arbitrarily well with respect to

uniform distance, provided that sufficiently many hidden units are available.

" |n words: Given any continuous function f(x), if a 2-layer neural
network has enough hidden units, then there is a choice of
weights that allow it to closely approximate f(x).

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”

Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”

Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation
Functions Can Approximate Any Function”

Universal Function Approximation Theorem?*

Math. C | Signals S: 9) 2: 3033 .
ath. Control Signals Systems (1989) 2: 303-314 Mathematics of Control,

Signals, and Systems

© 1989 Springer-Varlag New York Inc.

Approximation by Superpositions of a Sigmoidal Function*

G. Cybenkot

Abstract. In this paper we d that finite linear bii of com-
positions of a fixed, univariate function and a set of afline functionals can uniformly
approximate any continuous function of n real variables with support in the unit
hypercube; only mild conditions are imposed on the univariate function. Our
results settle an open question about representability in the class of single hidden
layer neural networks. In particular, we show that arbitrary decision regions can

y well approxi ¥ i feedf d neural ks with
only a single internal, hidden layer and any continuous sigmeidal nonlinearity. The
paper discusses approximation properties of other possible types of nonlinearities
that might be implemented by artificial neural networks.

Key words. Neural Approximation, Ci

1. Introduction

A number of diverse application areas are concerned with the representation of
general functions of an n-dimensional real variable, x € R", by finite linear combina-
tions of the form

N
_,Zi ao(yIx +), m

where y; € R"and a;, # € R are fixed. (y" is the transpose of y so that y"x is the inner
product of y and x.) Here the univariate function o depends heavily on the context
of the application. Our major concern is with so-called sigmoidal ¢’s:

o) = 1 as t— +oo,
0 as = —o.

Such functions arise naturally in neural network theory as the activation function
of a neural node (or unit as is becoming the preferred term) [L1], [RHM]. The main
result of this paper is a demonstration of the fact that sums of the form (1) are dense
in the space of continuous functions on the unit cube if # is any continuous sigmoidal

* Date received: October 21, 1988, Date revised: February 17, 1989. This rescarch was supported
in part by NSF Grant DCR-8619103, ONR Contract N000-86-G-0202 and DOE Grant DE-FGO02-
85ER25001.

1 Center for Research and Ds and Department of
Engineering, University of Illinois, Urbana, Illinois 61801, US.A.

and Computer

303

ST

1991 e
Copyright ©© 1941 Pergamon Press pic

Neurai Netwarks, Vol 4. pp.
Printed in the USA. Al rights reserved

ORIGINAL CONTRIBUTION

Approximation Capabilities of Multilayer
Feedforward Networks

KurT HORNIK
Technische Universitiit Wien. Vienna, Austria
(Received 30 January 19900 revised and accepied 25 October 1990)

Abstract—We show that standard multilayer feedforward networks with as few as a single hidden layer and
arbitrary bounded and nonconstant activation function are universal approximators with respect v L'{u) per-
formance criteria, for arbitrary finite input environment measures jo. provided only thar sfficiendy many hidden
units are available. If the activation function is continwous. bounded and nonconstant. then continueus mappings
can be learned uniformly over compact input seis. We also give verv general conditions ensuring that networks
wiith sufficiently smooth activation functions are capable of arbiirarily accurate approximation io a function and

us derivatives

Keywords—Multilayer feedforward networks, Activation function, Universal approximation capabilities. Input
environment measure, L*(u) approximation, Uniform approximation, Soboley spaces, Smoath approximation

1. INTRODUCTION

The approximation capahilities of neural network ar-
chitectures have recently been investigated by many
authors, including Carroll and Dickinson (1989), Cy-
benko (1989). Funahashi (1989), Gallant and White
(1988). Hecht-Nielsen (1989), Hornik, Stinchcombe,
and White (1989, 1990), Iric and Miyake (1988),
Lapedes and Farber (1988), Stinchcombe and White
(1989, 1990). (This list is by no means complete.)

If we think of the network architecture as a rule
for computing values at { output units given values
at k input units, hence implementing a class of map-
pings from R* to R, we can ask how well arbitrary
mappings from R* to R can be approximated by the
network, in particular, if as many hidden units as
required for internal representation and computation
may be employed.

How to measure the accuracy of approximation
depends on how we measure closeness between func-
tions, which in turn varies significantly with the spe-
cific problem to be dealt with. In many applications,
it is necessary to have the network perform sinud-
taneously well on all input samples taken from some
compact input set X in R*. In this case, closeness is

Requests for reprints should be sent to Kurt Hornik, Institut
fir St k und Wahrscheinlichkeitstheorie, Technische Uni-
versitit Wicn, Wiedner HauprstraBe 8-100107, A-1040 Wien, Aus.
tria.

measured by the uniform distance between functions
on X, that is,

poxlf.g) = sup |fx) - gl

In other applications. we think of the inputs as ran-
dom variables and are interested in the average per-
formance where the average is taken with respect to
the input environment measure u, where u(R*) < =,
In this case, closeness is measured by the L£7(u) dis-
tances :

R Lo
mAf g = ' [flx) — glx)r duley| .

1 = p < =, the most popular choice being p = 2,
corresponding to mean square error

Of course, there are many more ways of measur-
ing closeness of functions. In particular, in many ap-
plications. it is also necessary that the derivatives of
the approximating function implemented by the net-
work closely resemble those of the function to be
approximated, up to some order, This issue was first
taken up in Hornik et al. (1990), who discuss the
sources of need of smooth functional approximation
in more detail. Typical examples arise in robotics
(learning of smooth movements) and signal process-
ing (analysis of chaotic time series); for a recent ap-
plication to problems of nonparametric inference in
statistics and econometrics, see Gallant and White
(1989).

All papers establishing certain approximation ca-

MULTILAYER FEEDFORWARD NETWORKS
‘WITH NON-POLYNOMIAL ACTIVATION
FUNCTIONS CAN APPROXIMATE ANY FUNCTION

by
Moshe Leshno
Faculty of Management
Tel Aviv University
Tel Aviv, Israel 69978

and

Shimon Schocken
Leonard N. Stern School of Business
New York University
New York, NY 10003

September 1991

Center for Research on Information Systems
Information Systems Department
Leonard N. Stern School of Business
New York University

‘Working Paper Series

STERN 15-91-26

Appeared previously as Working Paper No. 21/91 at The Israel Institute Of Business Research

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) "Multilayer Feedforward Networks with Non-Polynomial Activation

Functions Can Approximate Any Function”

= Demo-site:
= http://playground.tensorflow.org/

http://playground.tensorflow.org/

How about computing all the derivatives (KEERZY) ?

= Derivatives tables:

(a)y=10
dx
i{_r} =1
o du
dx (au)= dx
d du dv
—(u+tv-w)j=—+—-—
dx de de dx
i{m} = H£+ »d—u
dx dx dx
d) tde_u
e\ v vde v odx
d ., n—t tlu
—(u y=nu —
d,r() dx
_{ 1 du
2'\ m (ii

d1y 1 du
T()_T
d{1Y_ n du
-:ix:(u”] T ™ dx

[mu] _ —[0 du

| du
—|Inu|=—/|log ——
fr[= r!'x[=¢] u dx
d [I:Jg u]zlﬂg ¢ | du
dx i i dx
d i Errdi
el dx
du
—a"=a"lna—
dx dx
di[u") =y ? +Inu u"%
x v
d . du
—S8INH =CO5UH—
dx dx
. du
—COSH = —S8Iinu—
dx dx
‘ > du
—tany = sec” u—
dx dx

5 du
cotu =—csc u

i
—secu =secutany—

dx dx
d du
CSCH =—Cscucotu
dx dx

How about computing all the derivatives?

But neural net f is never one of those?
= No problem: CHAIN RULE (k&EaEz(;EN) :

f f(z) = g(h(x))
Then f'(z) = ¢ (h(z))h' (z)

—> Derivatives can be computed by following well-defined procedures

Automatic Differentiation

= Automatic differentiation software
" e.g. Theano, TensorFlow, PyTorch, Chainer
" Only need to program the function g(x,y,w)
= Can automatically compute all derivatives w.r.t. all entries in w

= This is typically done by caching info during forward computation pass
of f, and then doing a backward pass = “backpropagation”

= Autodiff / Backpropagation can often be done at computational cost
comparable to the forward pass

= Need to know this exists
= How this is done?

INGE

= Optimize probability of label given input ~ max ll(w) = max Zlogp(y“)\ﬂ?(“;w)

= Continuous optimization

= Gradient ascent:
= Compute steepest uphill direction = gradient (= just vector of partial derivatives)
= Take step in the gradient direction
= Repeat (until held-out data accuracy starts to drop = “early stopping”)

= Deep neural nets
Last layer = still logistic regression

Now also many more layers before this last layer
= =computing the features
= - the features are learned rather than hand-designed
Universal function approximation theorem
= If neural net is large enough
= Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
= But remember: need to avoid overfitting / memorizing the training data = early stopping!

Automatic differentiation gives the derivatives efficiently

Computer Vision TTEA 1m0

Object Detection BfR&M (1R5!)

Manual Feature Design

Features and Generalization

Ve aod S S

s

e b N S —

NN L 1 3 ¥ Fopdoe

$
o~
I
i
‘..
'
4
[
|
{
.# .

| i

) S

"-‘ R .f..;

[
v
L/

[HoG: Dalal and Triggs, 2005]

Features and Generalization

~
ﬁ_
%
g 3
I
I
-
I
B

Performance

ImageNet Error Rate 2010-2014

Traditional CV
T9%
60%
=
[3:}
v
< 40%
T
20%
T9%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV
T9%
60%
=
[3:}
v
< 40%
T
20%
T9%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leamning

T9%
60%
2
[3:}
L
< 40%
ALl
20%
AlexNet
T%
2010 2011 2012 2013 2014

graph credit Matt
Zeiler Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leamning

T9%
60%
2
[
va
< 40%
I
20% E
AlexNet i 8
7% M
2010 2011 2012 2013 2014

graph credit Matt
Zeiler Clarifai

Performance

ImageNet Error Rate 2010-2014

Traditional CV @ Deep Leamning

T9%
60%
2
[
va
< 40%
I
20% E
AlexNet i 8
7% M
2010 2011 2012 2013 2014

graph credit Matt
Zeiler Clarifai

——

m~

MS COCO Image Captioning Challenge

'man in black shirt is ‘construction worker in "two young girls are "boy is doing backflip on
playing guitar. orange safety vest is playing with lego toy." wakeboard.'
working on road.’

e

‘man in blue wetsuit is
jumping in air.’ jumps over bar” swinging on swing." surfing on wave."

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more

‘girl in pink dress is "black and white dog

Visual QA Challenge

Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh

What vegetable is on the
plate?

Neural Net:

Ground Truth: broccoli

What color are the shoes
on the person's feet ?

Neural Net:
Ground Truth: brown

brown

How many school busses
are there?

Neural Net: 2

Ground. Truths: 2

What sport is this?
Neural Net: baseball
Ground Truth: baseball

What is on top of the
refrigerator?

Neural Net: magnets
Ground Truth: cereal

What uniform is she
wearing?

Neural Net: shorts
Ground Truth: girl scout

What is the table
number?

Neural Net: 4
Ground Truth:40

What are people sitting
under in the back?
Neural Net: bench
Ground Truth: tent

Speech Recognition

TIMIT Speech Recognition

® Traditional ® Deep Learning

1998 2000 2002 2004 2006 2008 2010 2012 2014 graph credit Matt Zeiler, Clarifai

Machine Translation
————————5oEE NEUTaT VISR e T on T pro U o

Encoder By |—| &4 — 82 || 83 || B4 |m™m| B85 |™| B4

Decoder ds . d- : ds ' ds

AR AR ? — HHR M A

[Ribeiro et al.]

l#ﬂ

i3

(a) Husky classified as wolf (b} Explanation

Figure 11: Raw data and explanation of a bad
model’s prediction in the “Husky vs Wolf"” task.

Before After

Trusted the bad model 10 out of 27 3 out of 27
Snow as a potential feature 12 out of 27 25 out of 27

Table 2: “Husky vs Wolf"” experiment results.

T ARXH

covariate shift

Covariate Shift or Feature Bias

* However, no chance for generalization
if training and test samples have
nothing in common.

Ptra?ln (.’L‘, y) 7'_é Ptest(may)

« Covariate shift:

— Input distribution changes
Ptra,in(w) 7é Ptest (33)
— Functional relation remains unchanged

Ptra,in (y'iﬂ) — Ptest (y|$)

Covariate Shift

—— Target Function flx)

—— Learned Function f(x)
@® Training Sample (x;. ;)
X Test Sample (t.u;)

Training and test input follow
different distributions, but functional
relation remains unchanged.

Input Density
15} = et
1.4 ﬂ
1.2
1
0.8
0.6
0.4
0.2
0

a 1 2 3

Goal: Estimate test output from {(x:. wi)}7, I

Importance-Weighted
Least-Squares
- - Drest(Ti) (= 2
Hun |:Z) (f(il’:g_) — yi) :|

i—1 ptrmn(i

IWLS is consistent even ~
under covariate shift. Jf (x) = a1 + apa

The idea is applicable to any
likelihood-based methods!
e Support vector machine,

logistic regression,)
conditional random field, etc. e

A Problem in Covariate Shift Adaptation

Importance weight

w(x) = Pre()

Dtr (17)

can diverge to infinity under a rather simple setting.
Cortes et al. (NIPS 2010

i ————

0 1 -~
T

In this situation, the covariate shift adaptation is unstable
since estimated importance weight is unstable®

RFEMEERR- EE (IR1T) T ARRIHRKRAET

	�
	回顾: 线性判别分类器
	如何获得概率化的判别决策?
	求解最优的 w?
	多分类罗吉斯特回归
	求解最优的 w?
	优化问题
	Hill Climbing 爬山算法
	一维优化
	2-D Optimization
	Gradient Ascent 梯度升高法
	梯度升高法
	求解最陡的方向?
	Gradient in n dimensions 梯度
	优化过程: 梯度上升法
	Batch Gradient Ascent on the Log Likelihood Objective
	在梯度上升法中每个权值向量的更新?
	Stochastic Gradient Ascent on the Log Likelihood Objective
	Mini-Batch Gradient Ascent on the Log Likelihood Objective
	How about computing all the derivatives?
	Neural Networks 神经网络
	多分类罗吉斯特回归
	Deep Neural Network深度神经网络 = Also learn the features!
	Deep Neural Network = Also learn the features!
	Deep Neural Network = Also learn the features!
	常用的激活函数
	Deep Neural Network: Also Learn the Features!
	神经网络的属性
	Universal Function Approximation Theorem*
	Universal Function Approximation Theorem*
	神经网络演示网址
	How about computing all the derivatives（求导函数）?
	How about computing all the derivatives?
	Automatic Differentiation
	小结
	幻灯片编号 38
	幻灯片编号 39
	幻灯片编号 40
	幻灯片编号 41
	幻灯片编号 42
	Performance
	Performance
	Performance
	Performance
	Performance
	MS COCO Image Captioning Challenge
	Visual QA Challenge
	Speech Recognition
	Machine Translation
	还存在哪些问题? – 相关性 不等于 因果关系
	covariate shift
	幻灯片编号 54
	幻灯片编号 55
	幻灯片编号 56
	还存在哪些问题– 选择（设计）什么样的损失函数

