
优化方法与神经网络



回顾: 线性判别分类器

 Inputs are feature values
 Each feature has a weight
 Sum is the activation

 If the activation is:
 Positive, output +1
 Negative, output -1
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如何获得概率化的判别决策?

 Activation:
 If very positive  want probability going to 1
 If  very negative  want probability going to 0

 Sigmoid function



求解最优的 w? 

 Maximum likelihood estimation:

with:

= Logistic Regression



多分类罗吉斯特回归
 Multi-class linear classification

 A weight vector for each class:

 Score (activation) of a class y:

 Prediction w/highest score wins:

 How to make the scores into probabilities? 

original activations softmax activations



求解最优的 w? 

 Maximum likelihood estimation:

with:

= Multi-Class Logistic Regression



优化问题

 Optimization

 i.e., how do we solve:



Hill Climbing 爬山算法

 在约束满足问题里面介绍过: simple, general idea
 Start wherever
 Repeat: move to the best neighboring state
 If no neighbors better than current, quit

 这里的挑战，求解多分类下罗吉斯特回归优化问题?
• Optimization over a continuous space 连续空间

• Infinitely many neighbors!
• How to do this efficiently?



一维优化

 Could evaluate and
 Then step in best direction

 Or, evaluate derivative:

 Tells which direction to step into



2-D Optimization

Source: offconvex.org



Gradient Ascent 梯度升高法

 把每一维度的权值推向上山的方向
 梯度越陡 (i.e. 导数越大) 更新的步长就越大

 例如: 

 Updates:
 Updates in vector notation:

with: = gradient



 Idea: 
 Start somewhere
 Repeat:  Take a step in the gradient direction

梯度升高法

Figure source: Mathworks



求解最陡的方向?

 一阶泰勒展开:

 最陡峭的爬升方向:

 Recall: 

 Hence, solution: Gradient direction = steepest direction!



Gradient in n dimensions 梯度



优化过程: 梯度上升法

 init

 for iter = 1, 2, …

 : 学习率 --- tweaking parameter that needs to be chosen 
carefully
 How? Try multiple choices
 经验做法: update changes       about 0.1 – 1 %



Batch Gradient Ascent on the Log Likelihood Objective

 init

 for iter = 1, 2, …



在梯度上升法中每个权值向量的更新?

adds f to the correct 
class weights

for y’ weights:

subtracts f from y’ weights in proportion to 
the probability current weights give to y’



Stochastic Gradient Ascent on the Log Likelihood Objective

 init

 for iter = 1, 2, …
 pick random j

Observation: once gradient on one training example has been 
computed, might as well incorporate before computing next one



Mini-Batch Gradient Ascent on the Log Likelihood Objective

 init

 for iter = 1, 2, …
 pick random subset of training examples J

Observation: gradient over small set of training examples (=mini-batch) 
can be computed in parallel, might as well do that instead of a single one



 We’ll talk about that once we covered neural networks, which 
are a generalization of logistic regression 

How about computing all the derivatives?



Neural Networks 神经网络



多分类罗吉斯特回归

 = special case of neural network
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Deep Neural Network深度神经网络 = Also learn the features!
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Deep Neural Network = Also learn the features!
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Deep Neural Network = Also learn the features!
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常用的激活函数



Deep Neural Network: Also Learn the Features!

 Training the deep neural network is just like logistic regression:

just w tends to be a much, much larger vector 

just run gradient ascent 
+ stop when log likelihood of hold-out data starts to decrease



神经网络的属性

 Theorem (Universal Function Approximators).  A two-layer neural 
network with a sufficient number of neurons can approximate 
any continuous function to any desired accuracy.

 Practical considerations
 Can be seen as learning the features 

 Large number of neurons
 Danger for overfitting
 (hence early stopping!)



Universal Function Approximation Theorem*

 In words: Given any continuous function f(x), if a 2-layer neural 
network has enough hidden units, then there is a choice of 
weights that allow it to closely approximate f(x). 

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation 
Functions Can Approximate Any Function”



Universal Function Approximation Theorem*

Cybenko (1989) “Approximations by superpositions of sigmoidal functions”
Hornik (1991) “Approximation Capabilities of Multilayer Feedforward Networks”
Leshno and Schocken (1991) ”Multilayer Feedforward Networks with Non-Polynomial Activation 
Functions Can Approximate Any Function”



神经网络演示网址

 Demo-site:
 http://playground.tensorflow.org/

http://playground.tensorflow.org/


 Derivatives tables:

How about computing all the derivatives（求导函数）?



How about computing all the derivatives?

 But neural net f is never one of those?
 No problem: CHAIN RULE（求导链式法则）:

If 

Then

 Derivatives can be computed by following well-defined procedures



 Automatic differentiation software 
 e.g. Theano, TensorFlow, PyTorch, Chainer
 Only need to program the function g(x,y,w)
 Can automatically compute all derivatives w.r.t. all entries in w
 This is typically done by caching info during forward computation pass 

of f, and then doing a backward pass = “backpropagation”
 Autodiff / Backpropagation can often be done at computational cost 

comparable to the forward pass

 Need to know this exists
 How this is done?  

Automatic Differentiation



小结
 Optimize probability of label given input

 Continuous optimization
 Gradient ascent:

 Compute steepest uphill direction = gradient (= just vector of partial derivatives)
 Take step in the gradient direction
 Repeat (until held-out data accuracy starts to drop = “early stopping”)

 Deep neural nets
 Last layer = still logistic regression
 Now also many more layers before this last layer

 = computing the features
  the features are learned rather than hand-designed

 Universal function approximation theorem
 If neural net is large enough 
 Then neural net can represent any continuous mapping from input to output with arbitrary accuracy
 But remember: need to avoid overfitting  / memorizing the training data  early stopping!

 Automatic differentiation gives the derivatives efficiently



Computer Vision 计算机视觉



Object Detection 目标检测（识别）



Manual Feature Design



Features and Generalization

[HoG: Dalal and Triggs, 2005]



Features and Generalization

Image HoG



Performance

graph credit Matt 
Zeiler, Clarifai
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MS COCO Image Captioning Challenge

Karpathy & Fei-Fei, 2015; Donahue et al., 2015; Xu et al, 2015; many more 



Visual QA Challenge
Stanislaw Antol, Aishwarya Agrawal, Jiasen Lu, Margaret Mitchell, Dhruv Batra, C. Lawrence Zitnick, Devi Parikh 



Speech Recognition

graph credit Matt Zeiler, Clarifai



Machine Translation
Google Neural Machine Translation (in production)



还存在哪些问题? – 相关性 不等于 因果关系

[Ribeiro et al.]



covariate shift









还存在哪些问题– 选择（设计）什么样的损失函数
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