MDP SE_&f9

Example: Grid World

= A maze-like problem
" The agent lives in a grid
= Walls block the agent’s path
= Noisy movement: actions do not always go as planned
= 80% of the time,
the action North takes the agent North

1 2 3 4

= 10% of the time, North takes the agent West; 10% East

= |f there is a wall in the direction the agent would have
been taken, the agent stays put

= The agent receives rewards each time step
= Small “living” reward each step (can be negative)
" Big rewards come at the end (good or bad)

= Goal: maximize sum of (discounted) rewards

Recap: MDPs

= Markov decision processes:
= States S
= Actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount v)
= Start state s,

= Quantities:
= Policy = map of states to actions
= Utility = sum of discounted rewards
= Values = expected future utility from a state (max node)

= Q-Values = expected future utility from a g-state (chance
node)

Recap: Optimal Quantities

=" The value (utility) of a state s:
V*(s) = expected utility starting in

sisa
s and acting optimally state
(s,a)is a
o q-state
* The value (utility) of a g-state (s,a):
(s,a,s’)isa

Q’(s,a) = expected utility starting
out having taken action a from
state s and (thereafter) acting
optimally

transition

- - Demo: gridworld values (L9D1
= The optimal policy: [Demo: gridworld values (L9D1)]

n"(s) = optimal action from state s

Snapshot of Gridworld - V Values

Noise = 0.2
VALUES AFTER 100 ITERATIONS Discount = 0.9

Living reward =0

Snapshot of Gridworld - Q Values

Noise = 0.2
O-VALUES AFTER 100 ITERATIONS Discount = 0.9

Living reward =0

The Bellman Equations

How to be optimal:

Step 1: Take correct first action

The Bellman Equations

= Definition of “optimal utility” via
expectimax recurrence gives a simple
one-step lookahead relationship amongst ,
optimal utility values T

V*(s) = max Q*(s, a)

Q*(s,a) =Y T(s,a,5') [R(s,a,5') +V*(5)] e

S

V*(s) = mC?XZT(s,a,s’) {R(s,a, s+ vV*(s’)}

S

" These are the Bellman equations, and
they characterize optimal values in a way
we’ll use over and over

—+= YA

Recap: Value Iteration ({H1%4%)

= Bellman equations characterize the optimal values:

V¥(s) = mngT(s,a,s’) {R(S,CL, s + 7\/*(3’)}

S

= Value iteration computes them:

Vieg-1(8) < mngT(s, a,s) {R(s,a, s+ ”ka(s’)}

= Value iteration is just a fixed point solution method

= ...though the V, vectors are also interpretable as time-limited values

Convergence* (Yigk)

How do we know the V, vectors are going to
converge?

Vi(s) Vig1(s)

Case 1: If the tree has maximum depth M, then
V, holds the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,, can be viewed
as depth k+1 expectimax results in nearly
identical search trees

= The difference is that on the bottom layer, V,,, / \ / \
has actual rewards while V, has zeros

= That last layer is at best all Ry,

" Itis at worst Ry,

= But everything is discounted by y* that far out
= SoV,andV,,; are at most y* max|R| different
= So as kincreases, the values converge

BT TR R SR AEMDP 7 32
olicy Methods

O

N
1N

i

L/
KN

] 7E HY SRS

K ARAT S IR © kAT D)

\\
\\
\\
y b
A s

B KRR WAE T AT 80 0 SRR F s KD RUE

INRAEH — A AN n(s), AR R AT HL LART 2
En$ - BPPRETRAE M0
- IR PR T RUERITHEG BR FEATRTR E (BERD B4
TR S

s NN GEFARRAEN) B, Wi
SR s HITRE

ERNE T, EXARE s IIIRUEN:

Vi(s) = WIRE s JFIR, 4SRN n ST, BRI s;7(s),s’

IRV — 1 [E] 7 1Y SRl B D) {H

LR IR S C IR PNy A S)

EARRER GET Bellman 2 NHI—2115H) :

VT(s) =) T(s,m(s),s)R(s,7m(s),8) +~V"(s)]

25451

Always Go Right

pZ

Z/f/\

Jl

Always Go Forward

2500 SRS VP

Always Go Right Always Go Forward

100.00 -10.00 100.00 -10.00
1.09]| -10.00 -10.00

-10.00
-10.00

S VAR

" 250 RS, WHATTHE VAR

= B 1. FT Bellman 752 BMRAEIEATE B

m(s)

s, Tt(s)
Vo'(s) =0 s
s;mls),s

V,f_l_l(s) — ZT(S, 7w(s),s)[R(s,7(s),s) + 'kaW(s’)]

S

A s
n BF . 0(S?) KA

= BB 2: HTRA T “BRFFS”, Bellman HHERAN T
— N VE RS

WIEHFEHL Policy Extraction

MIRZSE T

T HAT 3

= REEAICA VT EIRERSIUE VE(s)

= W ATATUn T AT B2
= TR

s HETHE P KA mini-expectimax:

m*(s) = arg Q’laXZT(S,a, SH[R(s,a,s") +~V*(s)]

S

= XU SRS RN, T RIS R OE, (R HER

a7 Ik #

MQ—E 1T H AT 3]

RN EH T &It q-values:

o HIAEFRATTUN T PRk 4T 82
o LA R £ B

7m*(s) = argmaxQ*(s,a)

j<

B NEEIRSAL B s AT S Q-1

RESEFER S !

Rlaee

3

7% Policy Iteration

RS BAEIEA T AR R A

o TR IEACSEILR 2 2L T Bellman 5 FEH 5 3~ 2

Vieg1(s) < mngT(s, a,s) [R(s,a, s + WV]{(S’)}

8,

= 0@ 1 R - BIOERRIE A4S 2 0(S%A)

= W& 2 ERNE GRS B “mK” SR i

= W) 3: SREE policy 1 HIRAAE ST B PR

VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

Cridworld Display

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

Cridworld Display

A 'S

VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

Gridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0

>

y

T 1EACyE Policy Iteration

Nl

o MR e s AUE
= JDIR 1 RESVEUT: 5 FAEDE AT RES, THE SR
SME REMNIARRERICAIRSED , BRHE, B’
IR E I S
= JDIR 20 RESCGH: HERATIIEME, R MR — 2 i,
1 2 BriEAR i EI S (but not optimal!) JRSE (FE
NARRIPPIRASED
52 XN L RAT B R RS IS

[|
Lml

SIS 1EACyE (Policy iteration)

h%

= TEHSPEYY: XN T HARTRISERS n, {8 SRS PR SRR T FOIRAS
A E HIE :
= EREEV-EREL

Vit 1 (s) ZT(s mi(s),8') |R(s,mi(s),8") 4+~ V(s))]

o RMEHGH: At EHCRVE, RSO RE,
AT B I — 2 1 SRS
= [qHT — 20 iHE:
m;+1(s) = arg maXZT(S, a,s’) [R(s, a,s’) + ny’”’i(s’)}

S,

Slow

1.0

+1

o
Vo (s)

Cool

Slow

Warm
Slow

Overheated

Overheated

BAEE

= CRSEEACAR IS IEATE T E R 2 B35 (RS RT3
{H)

= RSB RIS
o FRRIEA, BEHOIRESVHE, Mg (2 xlth)
= B BB RN, (HE WAFEAT BN SRR I — A s KBRS SERR BB
aw:La A

= JESRIEIAAE
= FAEZAUEE RS F, @l JLGER, SRt ECRES R TR E (V1ED
(BROGEAARDR, BROAEATIER R 25 8 —AMT3), e Fra AT 8) 7030
= ESERIETEO AR S bR, — MBS ki ok (X —20 e,
LR SE S AT R LA — KA
= HTHRESR S A (BAE, S FESR)

= Both are dynamic programs for solving MDPs

Szt MDP EyE

o PEUIRS SO RE . A AR (A, BN hE &
%

= 20 —NIRES, THEDIRESE A EHEF 071

o JHIDIRSERE A RS A SRES IR B VE (R — 2R
1)

 XUETTE B RAPRAG !
s U EEGERET Bellman TAE B #Hi R AR
= AR 7T S A I R R — A T AR B
= BT) R AT 2 E e — DR, BRI E1T3h9 3C
FIEAT B IE (E RAC AR DB AT 3D

Double Bandits

Double-Bandit MDP

= Actions: Blue, Red
= States: Win, Lose

-

~

No discount
100 time steps

Both states have
the same value

Offline Planning

= Solving MDPs is offline planning No discount

: oL : 100 time steps
" You determine all quantities through computation P
Both states have

= You need to know the details of the MDP the same value

" You do not actually play the game!

~

Value

-

Play Red 150

Play Blue 100

o 7

Let’s Play!

S2 S2 SO S2 S2
S2 $2 SO SO SO

Online Planning

= Rules changed! Red’s win chance is different.

Let’s Play!

SO SO SO $2 SO
S2 SO SO SO SO

What Just Happened?

" That wasn’t planning, it was learning!
= Specifically, reinforcement learning (1&5&=5>])
= There was an MDP, but you couldn’t solve it with just computation
*= You needed to actually act to figure it out

" |mportant ideas in reinforcement learning that came up

= Exploration (#{22) :you have to try unknown actions to get
information

Exploitation (F|JF) : eventually, you have to use what you know
= Regret: even if you learn intelligently, you make mistakes

= Sampling: because of chance, you have to try things repeatedly

= Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!

	MDP 第二部分
	Example: Grid World
	Recap: MDPs
	Recap: Optimal Quantities
	Snapshot of Gridworld - V Values
	Snapshot of Gridworld - Q Values
	The Bellman Equations
	The Bellman Equations
	Recap: Value Iteration (值迭代)
	Convergence* （收敛）
	基于策略的求解MDP方法�Policy Methods
	策略评价
	固定的策略
	用来评价一个固定的策略的功效值
	举例: 策略评价
	举例: 策略评价
	策略评价
	策略提取 Policy Extraction
	从状态值计算行动
	从Q-值计算行动
	策略迭代法 Policy Iteration
	状态赋值迭代方法的缺点
	k=0
	k=1
	k=2
	k=3
	k=4
	k=5
	k=6
	k=7
	k=8
	k=9
	k=10
	k=11
	k=12
	k=100
	策略迭代法 Policy Iteration
	策略迭代法 （Policy iteration）
	幻灯片编号 39
	比较
	总结: MDP 算法
	Double Bandits
	Double-Bandit MDP
	Offline Planning
	Let’s Play!
	Online Planning
	Let’s Play!
	What Just Happened?
	Next Time: Reinforcement Learning!

