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Example: Grid World

= A maze-like problem
" The agent lives in a grid
= Walls block the agent’s path
= Noisy movement: actions do not always go as planned
= 80% of the time,
the action North takes the agent North

1 2 3 4

= 10% of the time, North takes the agent West; 10% East

= |f there is a wall in the direction the agent would have
been taken, the agent stays put

= The agent receives rewards each time step
= Small “living” reward each step (can be negative)
" Big rewards come at the end (good or bad)

= Goal: maximize sum of (discounted) rewards



Recap: MDPs

= Markov decision processes:
= States S
= Actions A
= Transitions P(s’|s,a) (or T(s,a,s’))
= Rewards R(s,a,s’) (and discount v)
= Start state s,

= Quantities:
= Policy = map of states to actions
= Utility = sum of discounted rewards
= Values = expected future utility from a state (max node)

= Q-Values = expected future utility from a g-state (chance
node)



Recap: Optimal Quantities

=" The value (utility) of a state s:
V*(s) = expected utility starting in

sisa
s and acting optimally state
(s,a)is a
o q-state
* The value (utility) of a g-state (s,a):
(s,a,s’)isa

Q’(s,a) = expected utility starting
out having taken action a from
state s and (thereafter) acting
optimally

transition

- - Demo: gridworld values (L9D1
= The optimal policy: [Demo: gridworld values (L9D1)]

n"(s) = optimal action from state s



Snapshot of Gridworld - V Values

Noise = 0.2
VALUES AFTER 100 ITERATIONS Discount = 0.9

Living reward =0




Snapshot of Gridworld - Q Values

Noise = 0.2
O-VALUES AFTER 100 ITERATIONS Discount = 0.9

Living reward =0




The Bellman Equations

How to be optimal:

Step 1: Take correct first action




The Bellman Equations

= Definition of “optimal utility” via
expectimax recurrence gives a simple
one-step lookahead relationship amongst ,
optimal utility values T

V*(s) = max Q*(s, a)

Q*(s,a) =Y T(s,a,5') [R(s,a,5') +V*(5)] e

S

V*(s) = mC?XZT(s,a,s’) {R(s,a, s+ vV*(s’)}

S

" These are the Bellman equations, and
they characterize optimal values in a way
we’ll use over and over
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Recap: Value Iteration ({H1%4%)

= Bellman equations characterize the optimal values:

V¥(s) = mngT(s,a,s’) {R(S,CL, s + 7\/*(3’)}

S

= Value iteration computes them:

Vieg-1(8) < mngT(s, a,s) {R(s,a, s+ ”ka(s’)}

= Value iteration is just a fixed point solution method

= ...though the V, vectors are also interpretable as time-limited values



Convergence* (Yigk)

How do we know the V, vectors are going to
converge?

Vi(s) Vig1(s)

Case 1: If the tree has maximum depth M, then
V, holds the actual untruncated values

Case 2: If the discount is less than 1

= Sketch: For any state V, and V,,, can be viewed
as depth k+1 expectimax results in nearly
identical search trees

= The difference is that on the bottom layer, V,,, / \ / \
has actual rewards while V, has zeros

= That last layer is at best all Ry,

" Itis at worst Ry,

= But everything is discounted by y* that far out
= SoV,andV,,; are at most y* max|R| different
= So as kincreases, the values converge
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WIEHFEHL Policy Extraction
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7% Policy Iteration
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VALUES AFTER O ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




VALUES AFTER 1 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




VALUES AFTER 2 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




VALUES AFTER 3 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




VALUES AFTER 4 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




Cridworld Display

VALUES AFTER 5 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




Gridworld Display

VALUES AFTER 6 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




Cridworld Display

VALUES AFTER 7 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




Cridworld Display

VALUES AFTER 8 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




Cridworld Display

VALUES AFTER 9 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




Cridworld Display
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VALUES AFTER 10 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




Cridworld Display

VALUES AFTER 11 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




Gridworld Display

VALUES AFTER 12 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0




k=100

Cridworld Display

VALUES AFTER 100 ITERATIONS Noise = 0.2
Discount = 0.9
Living reward =
0
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SIS 1EACyE (Policy iteration)
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= Both are dynamic programs for solving MDPs
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Double Bandits




Double-Bandit MDP

= Actions: Blue, Red
= States: Win, Lose

-

~

No discount
100 time steps

Both states have
the same value




Offline Planning

= Solving MDPs is offline planning No discount

: oL : 100 time steps
" You determine all quantities through computation P
Both states have

= You need to know the details of the MDP the same value

" You do not actually play the game!

~

Value

-

Play Red 150

Play Blue 100

o 7




Let’s Play!

S2 S2 SO S2 S2
S2 $2 SO SO SO



Online Planning

= Rules changed! Red’s win chance is different.




Let’s Play!

SO SO SO $2 SO
S2 SO SO SO SO



What Just Happened?

" That wasn’t planning, it was learning!
= Specifically, reinforcement learning (1&5&=5>])
= There was an MDP, but you couldn’t solve it with just computation
*= You needed to actually act to figure it out

" |mportant ideas in reinforcement learning that came up

= Exploration (#{22) :you have to try unknown actions to get
information

Exploitation (F|JF) : eventually, you have to use what you know
= Regret: even if you learn intelligently, you make mistakes

= Sampling: because of chance, you have to try things repeatedly

= Difficulty: learning can be much harder than solving a known MDP



Next Time: Reinforcement Learning!
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