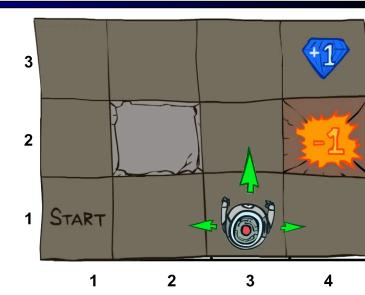
MDP 第二部分

Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent's path
- Noisy movement: actions do not always go as planned
 - 80% of the time,the action North takes the agent North

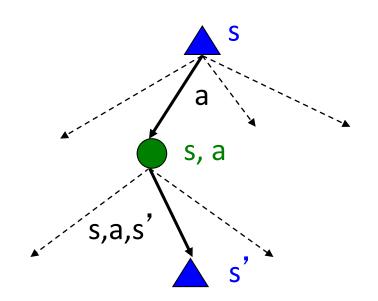


- 10% of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of (discounted) rewards

Recap: MDPs

Markov decision processes:

- States S
- Actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)
- Start state s₀



Quantities:

- Policy = map of states to actions
- Utility = sum of discounted rewards
- Values = expected future utility from a state (max node)
- Q-Values = expected future utility from a q-state (chance node)

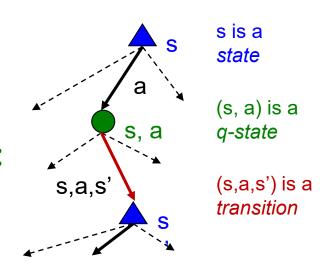
Recap: Optimal Quantities

The value (utility) of a state s:

V*(s) = expected utility starting in s and acting optimally

The value (utility) of a q-state (s,a):

Q*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally

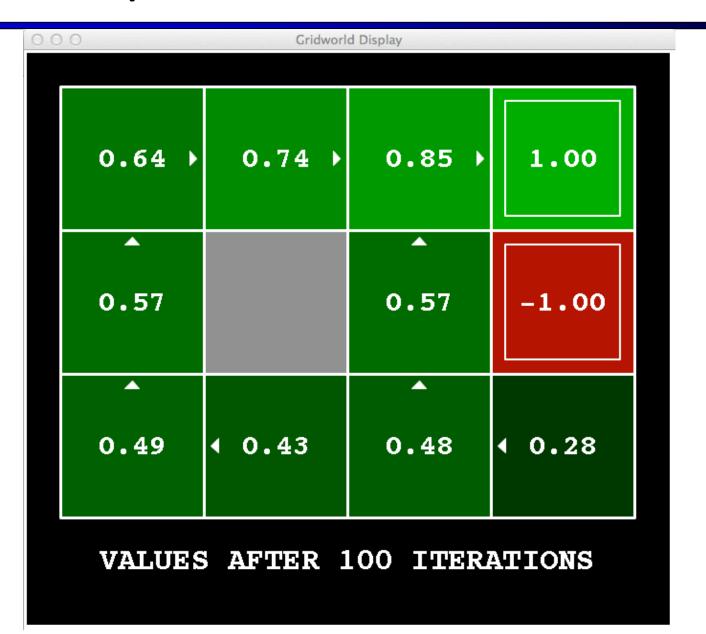


The optimal policy:

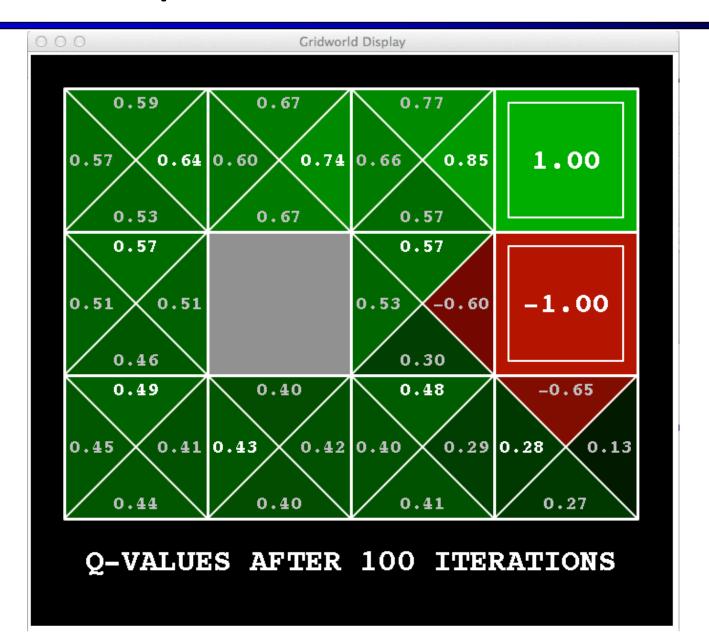
 $\pi^*(s)$ = optimal action from state s

[Demo: gridworld values (L9D1)]

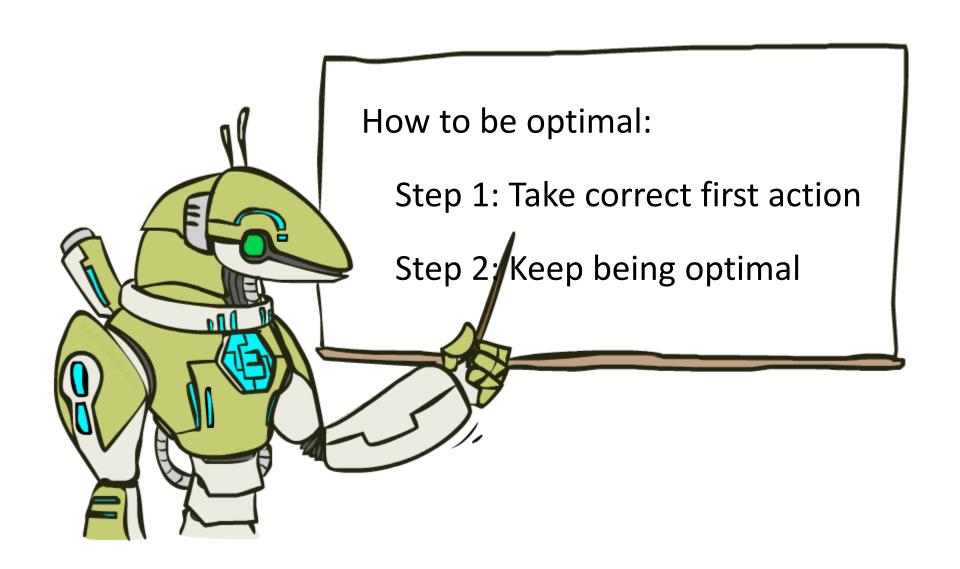
Snapshot of Gridworld - V Values



Snapshot of Gridworld - Q Values



The Bellman Equations



The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^*(s) = \max_{a} Q^*(s, a)$$

$$Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

 These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

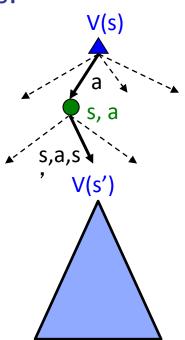
Recap: Value Iteration (值迭代)

Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration computes them:

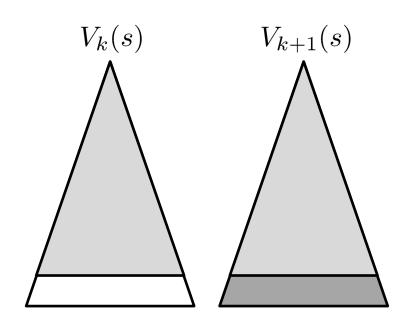
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$



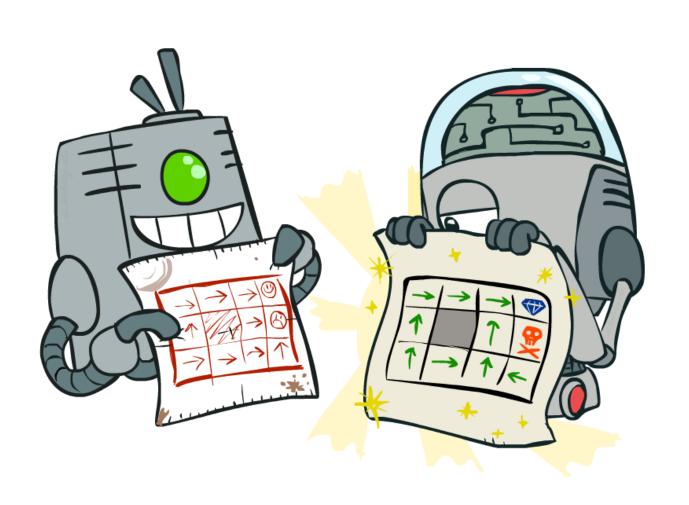
- Value iteration is just a fixed point solution method
 - ... though the V_k vectors are also interpretable as time-limited values

Convergence* (收敛)

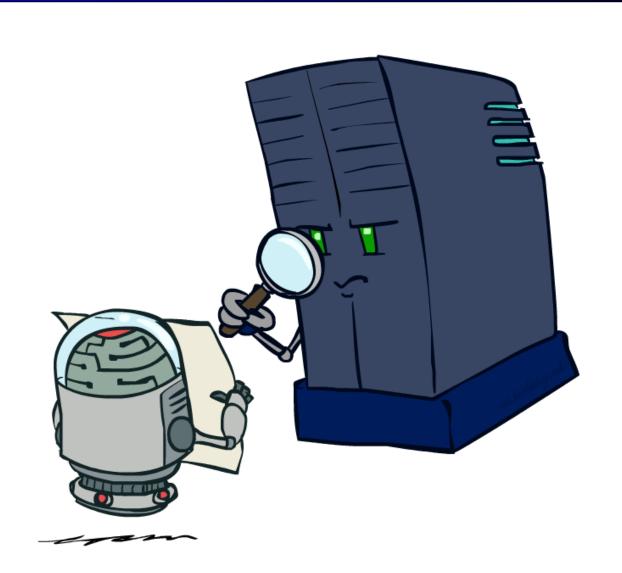
- How do we know the V_k vectors are going to converge?
- Case 1: If the tree has maximum depth M, then
 V_M holds the actual untruncated values
- Case 2: If the discount is less than 1
 - Sketch: For any state V_k and V_{k+1} can be viewed as depth k+1 expectimax results in nearly identical search trees
 - The difference is that on the bottom layer, V_{k+1} has actual rewards while V_k has zeros
 - That last layer is at best all R_{MAX}
 - It is at worst R_{MIN}
 - But everything is discounted by y^k that far out
 - So V_k and V_{k+1} are at most γ^k max |R| different
 - So as k increases, the values converge



基于策略的求解MDP方法 Policy Methods

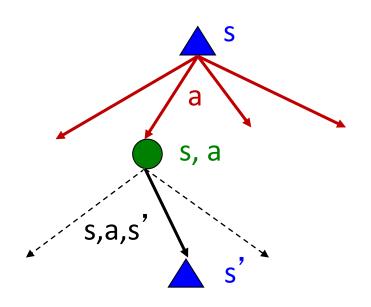


策略评价

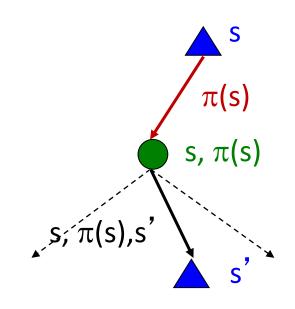


固定的策略

采取最优行动



按照策略 π 选择行动



- 期望最大值搜索树在所有行动分支里选择最大功效值
- 如果使用一个给定的策略 π(s), 那么这个搜索树变得比以前要 简单 - 每个状态节点只有一个分支
 - · · · 所以搜索树的状态节点值的计算将取决于我们所固定(使用)的那个 策略

用来评价一个固定的策略的功效值

- 当给定一个策略(通常不是最优的)时,如何计 算一个状态 s 的功效值
- 给定策略 π 下, 定义一个状态 s 的功效值为:

 $V^{\pi}(s) = 从状态 s 开始,按照策略 <math>\pi$ 执行,所获得的期 $\hat{x}, \hat{\pi}(s), s'$ 望折扣奖赏值的总计

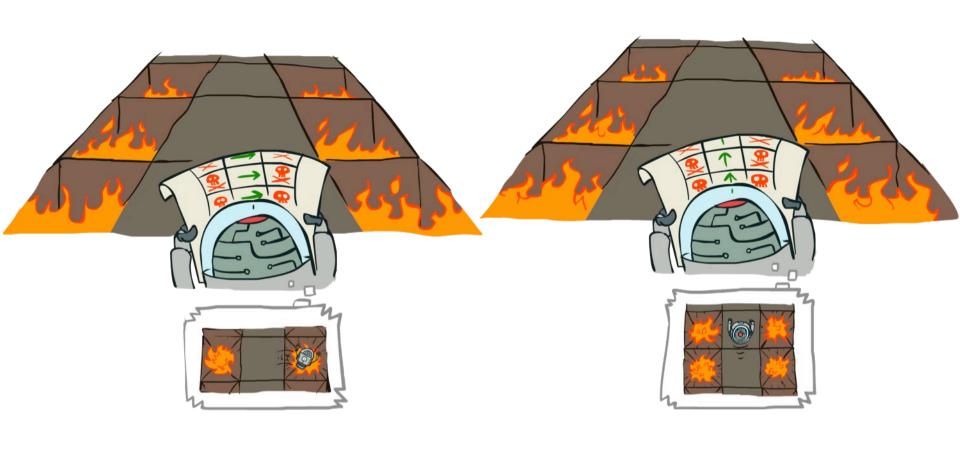
■ 迭代关系(基于 Bellman 公式的一步计算):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

举例:策略评价

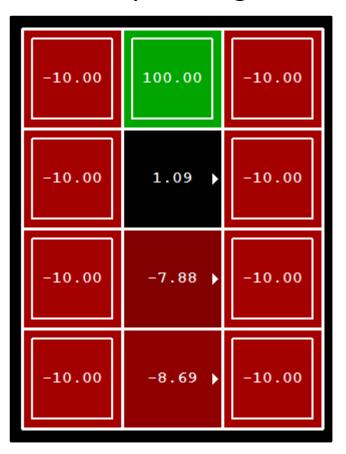
Always Go Right

Always Go Forward

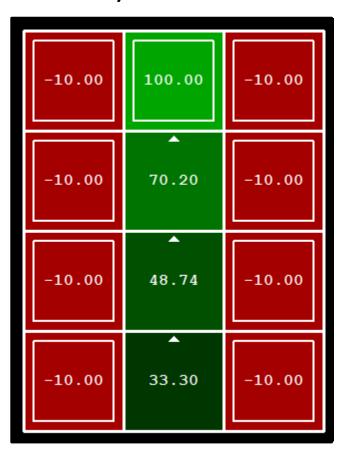


举例:策略评价

Always Go Right



Always Go Forward



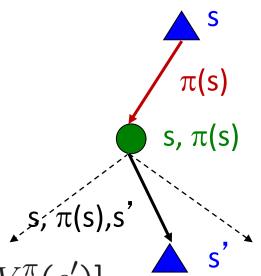
策略评价

- 给定一个策略π,如何计算 V-值?
- 思路 1: 基于 Bellman 方程的赋值迭代更新

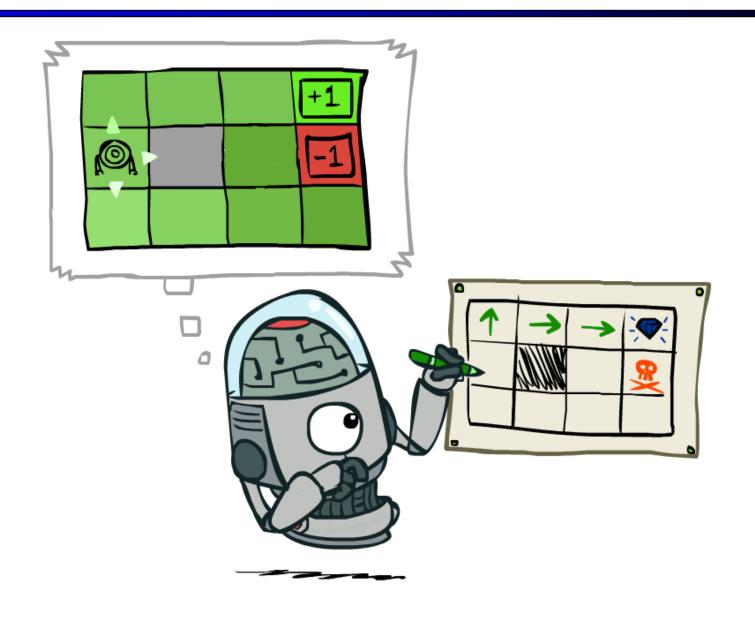
$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- 效率: 0(S²) 每步迭代
- 思路 2: 由于没有了"最大符号", Bellman 方程变为了 一个线性系统



策略提取 Policy Extraction



从状态值计算行动

■ 假设我们已有了每个状态的最优值 V*(s)

- 那么我们如何选择行动?
 - 不是很明显!
- 需要计算一步长的 mini-expectimax:

$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

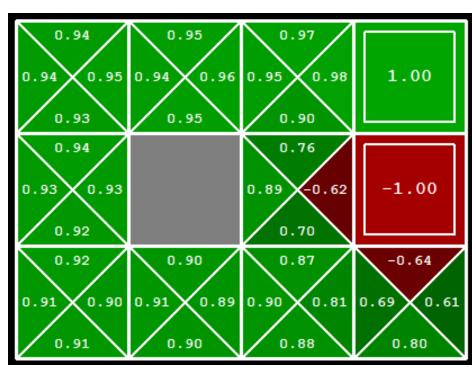
■ 这叫做 策略提取,通过计算期望最大值,间接地获得最优行动选择

从Q-值计算行动

■ 假设我们已有了最优的 q-values:

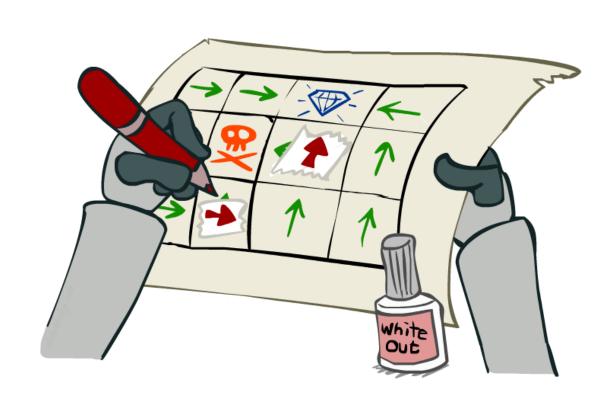
- 现在我们如何挑选行动?
 - 此时变得很简单!

$$\pi^*(s) = \arg\max_a Q^*(s,a)$$



■ 因此: 为每个状态位置选择最优行动从Q-值中比在 状态值中更容易!

策略迭代法 Policy Iteration

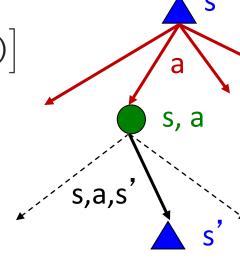


状态赋值迭代方法的缺点

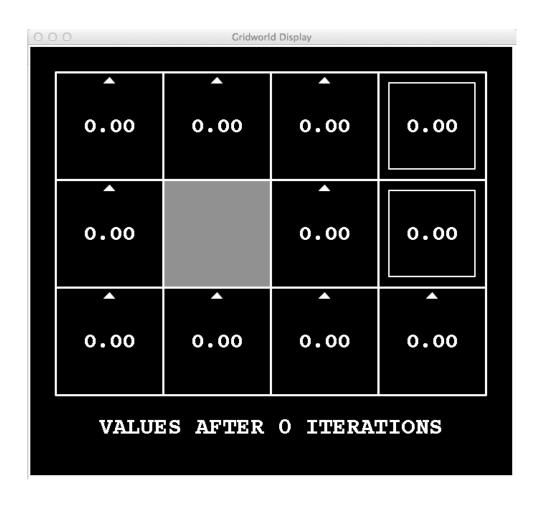
■ 赋值迭代实现的是基于 Bellman 方程的更新公式:

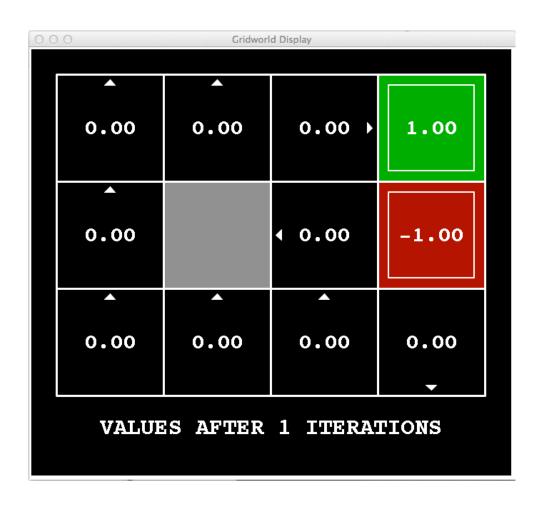
$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

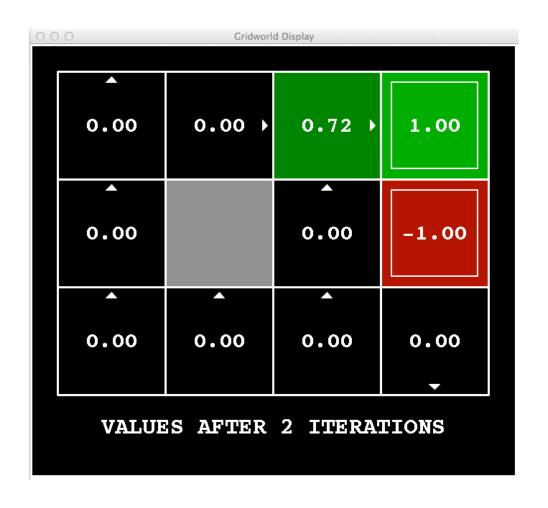
■ 问题 1: 很慢 -每次迭代的复杂度是 0(S²A)

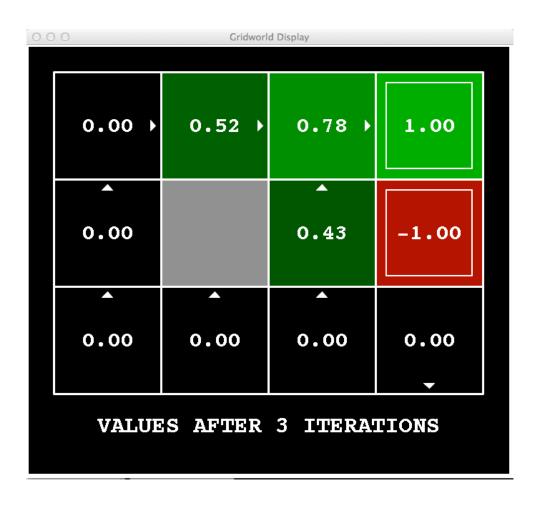


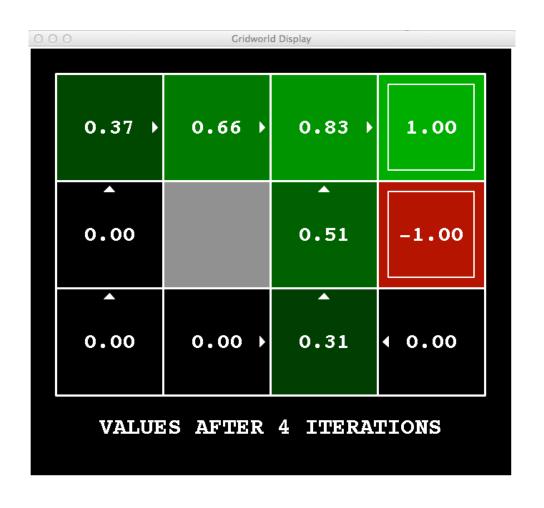
- 问题 2: 在每个位置(状态)的 "最大"选项很少改变
- 问题 3: 策略 policy 通常比状态值收敛的更快

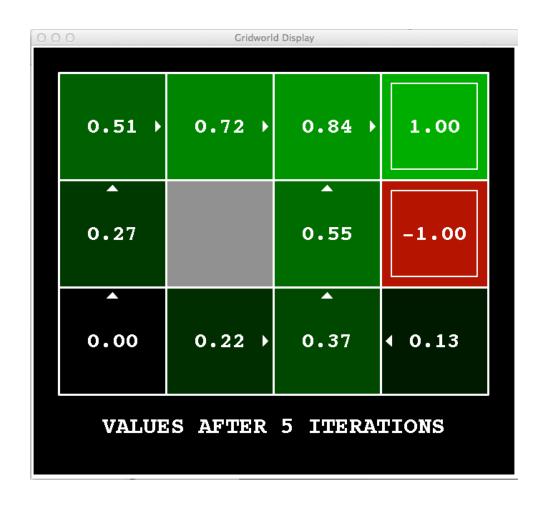


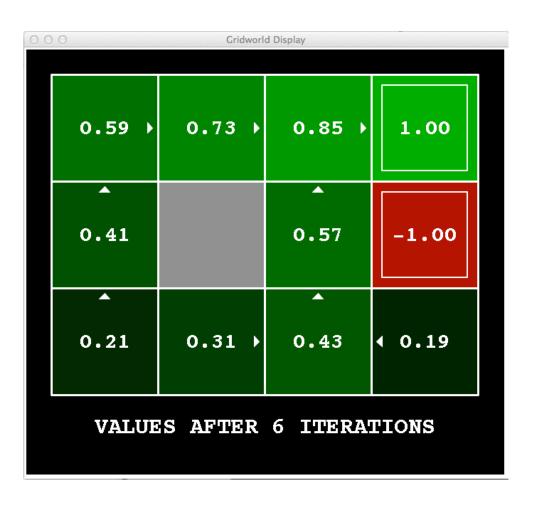


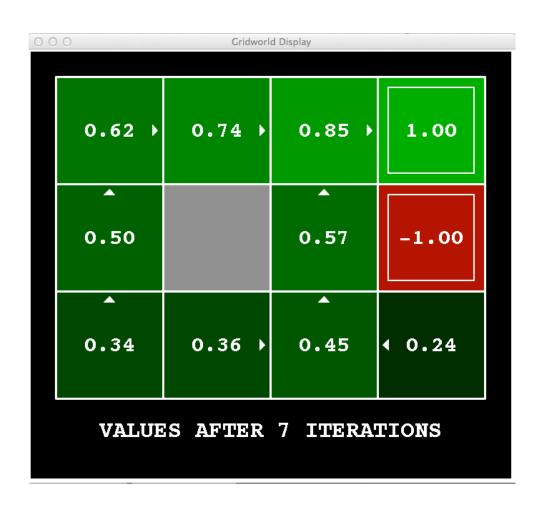


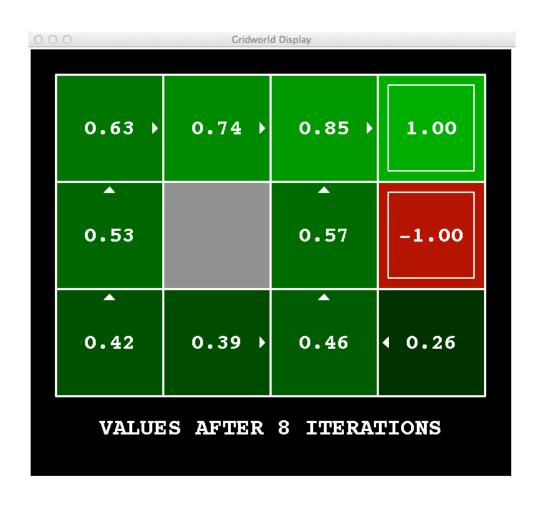


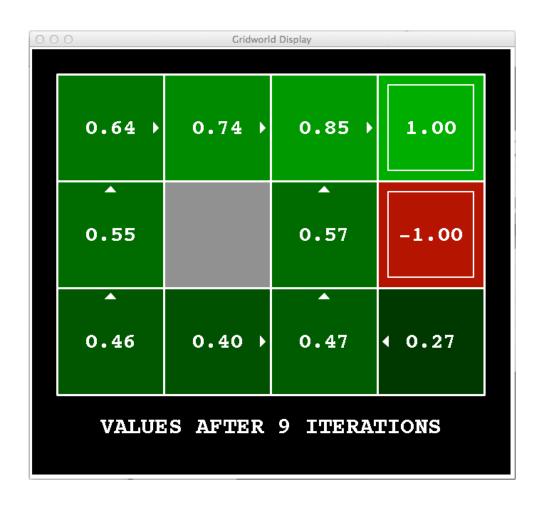


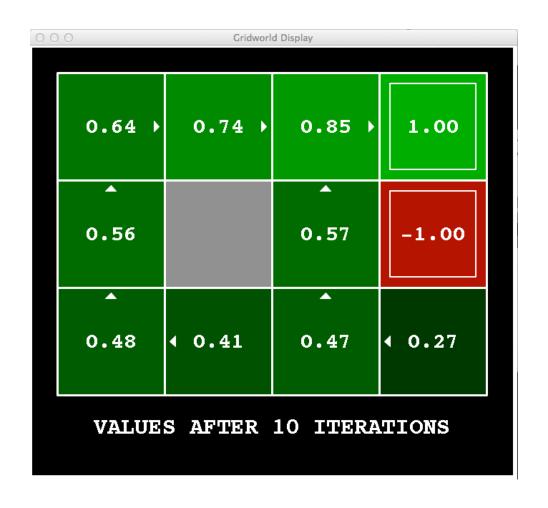


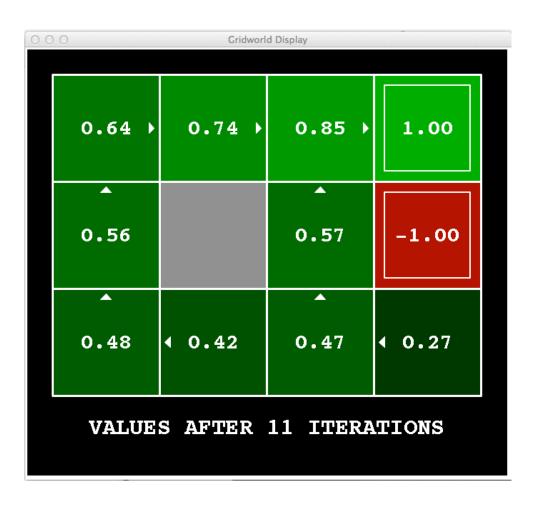


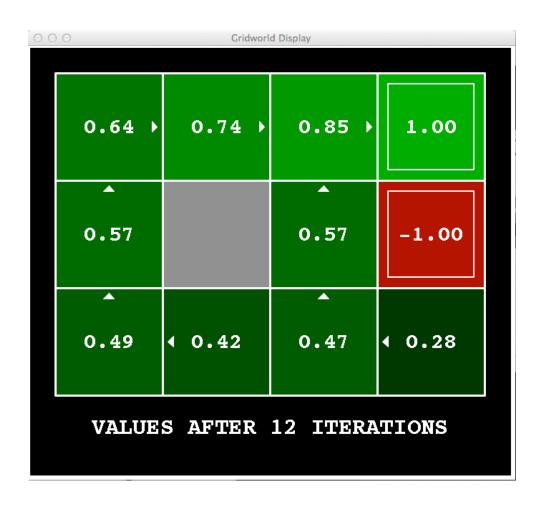




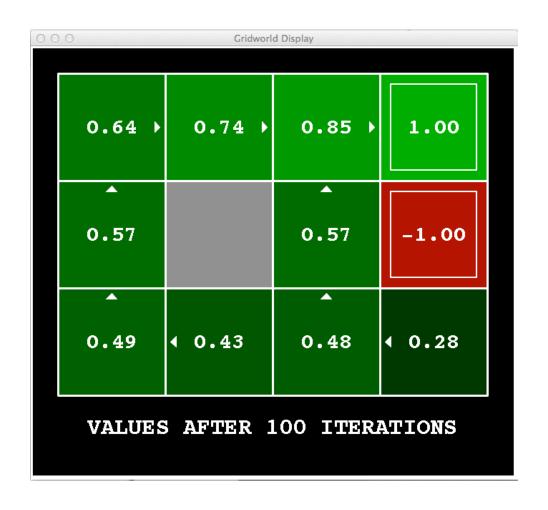








k = 100



策略迭代法 Policy Iteration

- 另一种方法求解最优值:
 - 步骤 1: 策略评价: 给定某个固定的行动策略, 计算各个状态值(尽管他们不是代表最优的状态值!), 迭代计算, 直到这个状态值收敛
 - 步骤 2: 策略改进: 更新行动策略,使用向前一步的计算,使用之前迭代计算收敛的(but not optimal!)状态值(作为未来的状态值)
 - 重复这两步直到行动策略收敛

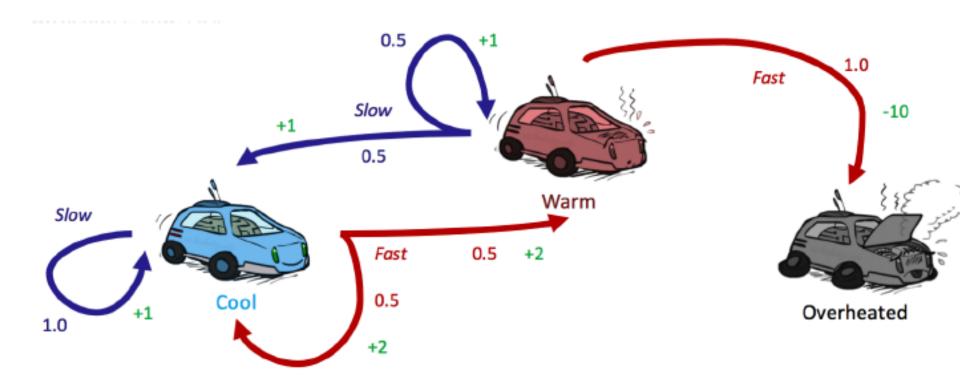
策略迭代法 (Policy iteration)

- 策略评价:对于当前的策略 π,使用策略评价过程计算状态位置的值:
 - 迭代直至V-值收敛

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

- 策略改进: 给定计算出来的V-值,通过策略提取过程,计算获得更好一步的策略
 - 向前 一步的 计算:

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$



	Cool	Warm	Overheated
π_0	Slow	Slow	
$V^{\pi_0}(s)$			
π_1			

比较

- 状态值迭代和策略迭代方法计算的是同一件事情(所有状态节点的最优功效值)
- 在状态赋值迭代里:
 - 每次迭代,更新状态V-值,和策略(隐式地)
 - 没有直接追踪策略,但是从不同行动分支中获取一个最大值时,实际上隐 式地计算了策略
- 在策略迭代里:
 - 我们在当前固定的策略下,通过几次迭代,更新计算状态的功效值(V-值) (每次迭代很快,因为我们此时只考虑一个行动,而不是所有的行动分支)
 - 在当前策略评价过程完成以后,一个新的策略被挑选出来(这一步较慢,就像状态赋值迭代方法里的一次迭代)
 - 新的策略将会更优化(否则的话,迭代过程结束)
- Both are dynamic programs for solving MDPs

总结: MDP 算法

■ 我们用到的算法:

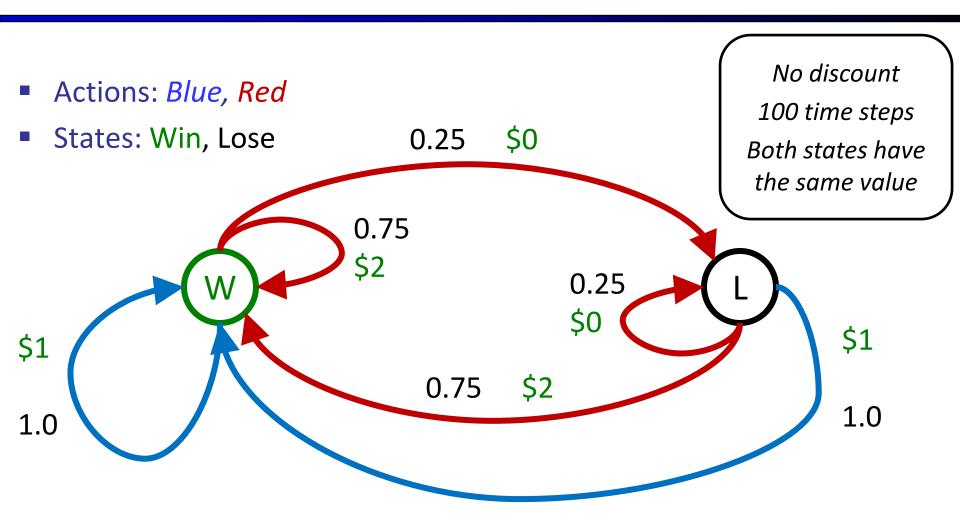
- 计算状态节点的最优功效值:使用*状态赋值迭代*,或*策略迭代*方法
- 给定一个策略, 计算状态值: 使用*策略评价*方法
- 通过状态值获取一个策略:使用策略提取方法(向前一步优化)

■ 这些方法看上去都很像!

- 它们本质上都是基于 Bellman 赋值更新表达式
- 全都使用了基于期望最大值的向前一步优化计算模块
- 它们区别只是在于是否固定一个策略,或是在所有行动分支中进行最优挑选(最大化期望功效值的行动)

Double Bandits

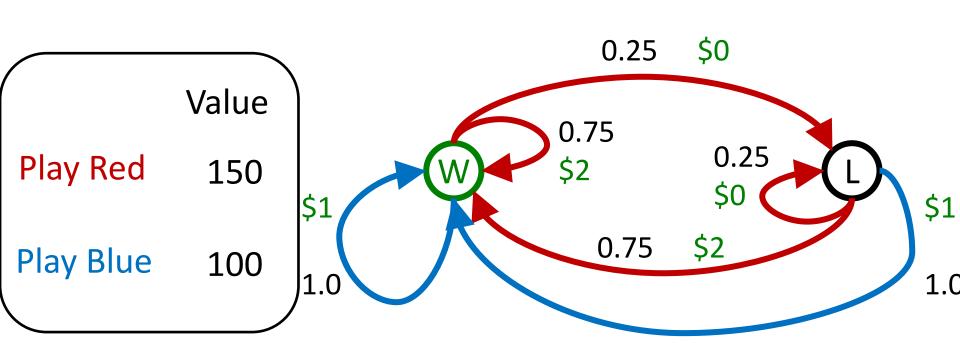
Double-Bandit MDP



Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

No discount
100 time steps
Both states have
the same value



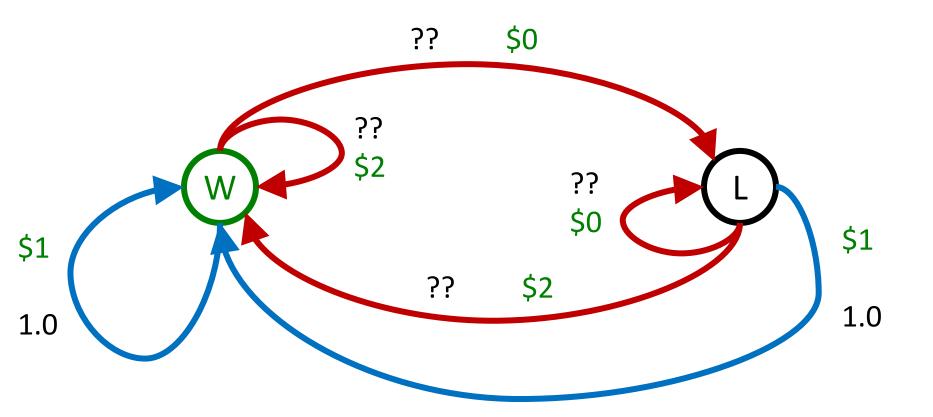
Let's Play!

\$2 \$2 \$0 \$2 \$2

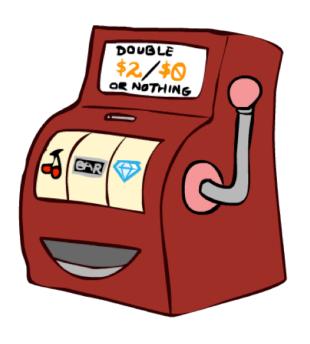
\$2 \$2 \$0 \$0 \$0

Online Planning

Rules changed! Red's win chance is different.



Let's Play!



\$0 \$0 \$0 \$2 \$0

\$2 \$0 \$0 \$0 \$0

What Just Happened?

- That wasn't planning, it was learning!
 - Specifically, reinforcement learning (增强学习)
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out
- Important ideas in reinforcement learning that came up
 - Exploration (探索): you have to try unknown actions to get information
 - Exploitation (利用): eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!